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Course Content: /leaming from breaking things

e Load

- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading 5
e Measure 127

- measurement of force, displacement,
and strain

- di%ital image correlation and _
other full-field measurement techniques

 Analyse

- selected special challenges in mechanical ]
. , 1
l.‘estlng(a.skforyours.) L R
- introduction to inverse problem 0 10 20 30
methodologies in experimental displacement (mm)
mechanics

load (kN)
o
L I L 1

9]
' T
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case study

_summative ass_essment of the
intended learning outcomes

- You can treat writing this as the inverse
problem to grading it.

choose a question to be answered
with a mechanical test
« provide context situating the question
 conclude how confident you would be
to perform this test yourself
- or what help you would need
« could be standardized, from a journal
1Iiaper, from your research, or
ypothetical

- cite your sources!

describe the test

specimen preparation

ualitative and quantitative
characterization of the specimen
before and after the test

physical quantities to be measured
- including measurement methods
instruments used

- criteria those must satisfy

relevant safety precautions

how to analyse test results

reasons the test results might not be
valid

- how to detect that when it is the case

Aalto University
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Methodologies




Inverse Problems:

Mixed Numerical Experimental Techniques

determine model parameters
from observed data

« forward problem predicts
observations for given model

parameters

- iterative solution to find model
parameters that agree with
observations

« inverse problem is often ill-posed

- regularisation, preferably using a
priori knowledge about actual
experiment

obsernvations

pelaMEIES

predictions




iterative solutions

model updating, parameter
identification, model validation
and verification...

forward problem evaluated
many times inside loop

experiment

| At AN
OBSEervations



difficulty of inverse problems

Hadamard conditions:

« a problem is well-posed if
- a solution exists

- the solution is unique
- the solution depends continuously on the data

« inverse problems are often ill-posed

regularisation modifies the problem statement to make it more
well-posed

extensive literature and active research in mathematics

Aalto University
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lll-posed problems: Hadamard conditions

a problem is well-posed if
 a solution exists

u
e the solution is unique
« the solution is stable, i.e., it /-\
I

depends continuously on the

data
inverse problems are often ill- '
posed D
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lll-posed problems: Hadamard conditions

a problem is well-posed if

 a solution exists ?
u

e the solution is unique
« the solution is stable, i.e., it E /-\

depends continuously on the
data

inverse problems are often ill-
posed
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lll-posed problems: Hadamard conditions

a problem is well-posed if

 a solution exists ?
u

« the solution is unique
« the solution is stable, i.e., it /\
depends continuously on the _>._>

data

inverse problems are often ill-
posed
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lll-posed problems: Hadamard conditions

a problem is well-posed if
 a solution exists

|
e the solution is unique
, i.e., it A
—_— s

depends continuously on the
data

inverse problems are often ill-
posed -
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lll-posed problems: Hadamard conditions

a problem is well-posed if
« a solution exists — ?

e the solution is unique
, i.e., it A

depends continuously on the —_— —
data

inverse problems are often ill-

posed
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lll-posed problems: Hadamard conditions

a problem is well-posed if
« a solution exists ?
|

e the solution is unique
, i.e., " A
depends continuously on the 4>._>

data

inverse problems are often ill-
posed
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regularization

modify an ill-posed problem to make it well-posed

« explicitly modify equation, e.g., by adding regularization term
« implicitly modify problem statement or solution search space
define a new problem that is “close” to original problem

e recover original problem in limit where regularization parameter —
ZETO

codify prior information about solution

* e.g., look for smoothly varying fields
 extreme case: vary simulation parameters to reproduce observations

Aalto University
School of Engineering



Inverse Problems
In Experimental Mechanics

parameter identification

« over-determined

« ill-posed only with non-linearities
full-field measurements

« under-determined

« excessive regularization causes
artifacts

forward problems solved by finite
element models

« computationally intensive

« shape functions act as
regularization

« finer mesh requires more
computation and gives less
regularization

[ Boundary Conditions]
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identification of mechanical properties

simple tests with uniformly loaded gauge section

e inverse problem is trivial

 not always possible experimentally

« lots of tests when many parameters are needed

inverse problem and test with complex loading

« make use of computation power and full-field measurements

« sensitivity depends on test design (e.g., specimen shape)
- can test actual components of products in relevant load cases

 coupled measurements of different parameters

Aalto University
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inverse problem methodologies
for identification of mechanical properties

finite element model updating

« iterative solution comparing measured strain or displacement fields with finite
element model results to update model parameters

equilibrium gap method

- if material model is wrong, then stresses calculated from measured strains are not
in equilibrium, so iterate parameters in model to fix that

integrated DIC

« use finite element model parameters as parametrization of admissible
displacement fields in DIC calculation

virtual fields method
- analytically calculate sensitivities of model parameters to measured displacements
« directly write system of equations relating measurements to sought parameters

Aalto University
School of Engineering
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mechanics of deformable solids

solid of any shape,

subjected to mechanical load
- displacement field u

- strain field

- stress field o

body forces

- acceleration a in dynamic problems
- other body forces b (e.g. gravity)

external surface S = Syu S,

tractions T specified on S,
- free surface has zero traction

« displacements u specified on S,




3 types of problems

IN mechanics of deformable solids

solid of any shape,
subjected to mechanical load

1. find fields u, € and o for
known boundary conditions
and constitutive behaviour

- classical FEM problem

2. 1dentify constitutive behaviour
from measured deformations

3. determine reaction forces




principle of virtual work

variational formulation of theoretical mechanics

e “weak form”
- weaker constraints on solution

« multiply local equilibrium equation with test function and integrate

V-.:0+b=pa

« for vector-valued test function u*

/(V-a')-u*dV+/b-u*dV:/pa-u*dV
1% 1% 1%



principle of virtual work

« integrate by parts to get div u* instead of div o

/V-(a-u*)dV:/(V-a)-u*dV+/J-Vu*dV
1% 1% 1%

 and use Gauss theorem to convert to surface integral of traction T

/V-(Uou*)dV:%n'a-u*dS:%T-u*dS
1% S S

e so that

/(V-a)-u*dV:jI{T-u*dS—/J-Vu*dV
1% S 1%



principle of virtual work

/(V-O')-u*dV:%T-u*dS—/O'-Vu*dV
1% S 1%

« for symmetric o and kinematically admissible u* simplifies to
/ (Vo) u"dV = j{ T -u*dS — / o - (V¥ u*)dV
|4 Sy |4

« which yields

]{ T -u*dS — / (V™) dV—I—/ b-u*dV:/pa-u*dV
S 1% 1%



principle of virtual work

weak form of mechanical equilibrium equation in deformable solid
« applied load 7{ T -u*dS
St
. reaction forces + ]{ T -u“dS
Sy
- internal stresses — / o - (Va*)dV
|4
« body forces + / b-u*dV
|4

« acceleration = / pa-u dV Yu*
Vv



remarks

« A continuous body is at equilibrium if the virtual work of all forces
acting on the body is null in any kinematically admissible virtual
displacement.

 If u* is in meters, then the virtual work is in Joules.

« The test functions u* are arbitrary weight functions, not related to the
actual displacement field u and independent of stress field o.
- Expanding u* in FEM shape functions is exact, not an approximation.
- The mesh used for these shape functions does not have to conform to the object.

» The reaction force term disappears for kinematically admissible u*.

« If u* is discontinuous, then tractions along the discontinuity must be
introduced to apply Gauss theorem.

e The Galerkin method and FEM can be derived from this.



linear elastic constitutive equations
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linear elastic constitutive equations

» orthotropic o = Qe
(01 ) Q11 Q12 Qi3 O 0 01 (e
02 Q12 Q22 (23 0 0 0 €2
Jos\ _ Q13 Q23 Q33 O 0 0 ] €3
o4 0 0 0 Qu O 0 €4
05 0 0 0 0 Q55 0 €5
\0'6) i 0 0 0 0 0 Q66_ \66/




linear elastic constitutive equations

» cubic o = Qe
(o1 ] Q11 Q12 Q12 0 0 0] (e
02 Q12 Q11 Q2 0O 0 0 €2
< o3\ _ Q12 Q12 @11 0 0 0 < €3
o 0 0 0 Qs O 0 €4
o5 0 0 0 0 Qe O €5
\0'6) i 0 0 0 0 0 Q66_ \66/
E vE .
Qll:l_VQ 1221_V2 Q66—G



linear elastic constitutive equations

« isotropic o = Qe

(1) Q11 Q12 Q12 0 0 0 (€1 )
09 Q12 Qi1 Q2 0 0 0 €9
o3|  [Qiz Q12 Cn 0 0 0 €3
You( |0 0 0 @@ g 0 | Ve
o 0 0 0 0 Bt 0 €5
los) L0 0 0 0 0 Q-2 | | €
E
E vE Qs = G =

11:1—V2 Q12:1_V2 2(1—|—V)



linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

]{ T-u*dS—/ o - (V¥u")dV +M=,[/pa/ﬁ‘d/‘/
Sy 1%

o1 Qi1 Q12 O €1

o2 p = |Qi2 Quu 0 €2

o 0 0  Qes| |¢6



linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

/ o - (V¥"u")dV
1%

_ / (Qu1616" + Quieact + Qraler€h + ex€) + Qugesel)dV
14

:7{ T -u*dS
Sy



linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work

for simplicity, consider static in-plane cubic case without body forces

(/ (6161< + GQES)CZV) Qll + (/ (6163 + EQET)dV) ng + (/ (EGEZ)CZ‘/) Q66
|4 |4 |4

:j{ T .-u*dS
Sy



linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work
- for as many virtual fields as independent coefficients

(/ (6161‘(1) + 6263(1))6”/) Qu + (/ (6163(1) + 62€T(1))dV) Q12 + (/ (6662(1))611/) Qes = 7{ T -uMds

Vv \Y4 Vv Sf

( | @+ ege;@))dv) Qu + ( JRCEEE EQe;@))dv) Qua + ( / <eﬁe;<2>>dv> Qu=f T was
1% \%4 \% Sf

(/ (GlfT(S) + 5265(3))6”/) Qi1+ (/ (6163(3) + €2€T(3))dv) Q12 + </ (5663(3))dv> Qo6 = j{ T -u®as
1% 1% v Sy



linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work
- for as many virtual fields as independent coefficients

Qll fo T . u*(l)dS
{le} = foT-u*@)dS
Qo6 g5, T u*®gs

Jy (@i +asMav [ (@i +adMav [ i)V
fv (EIET@) + 6263(2))dv fV (6163(2) + 626>{(2))dv fV (6662(2)>dv
Jv (€1€T(3) + 6263(3))6”/ Jv (€1€>2k<3) + €2€>1k(3))dV Jv (6663(3)>dV




linear virtual fields method

« substitute linear elastic constitutive equations
« apply principle of virtual work
- for as many virtual fields as independent coefficients

A-Q=B

fV (616’1‘(1) + 626’2‘(1))61‘/ fv (6163(1) + EQGT(l))dV
fv (elefm + 6265(2))dv fv (6163(2) + EQET(Q))CZV

Qll fo T - u*(l)dS
Q= {Qm} B = ffsz-u*@)dS

OFT f’ESf T. u*®ds

v (€6
[y (e16t® +ee3®av [ (@1es® + e2es®NdV [, (e



special virtual fields

« The equation A - Q = B still depends on the choice of virtual fields.
- valid for any choice of virtual fields
- solvable for any linearly independent choice of virtual fields
- numerically stable if condition number of A is close to 1

« It is possible to choose the virtual fields such that A is perfectly
conditioned and trivially solvable by making A = I the identity matrix.
- A =11s a set of linear equations
- as many equations as elements of A

« It is possible to assess a priori how sensitive to noise the calculation is.
- coefficients depend on material coefficients Q

- optimized virtual fields minimize noise sensitivity
- iteratively solving material coefficients and optimizing converges quickly



