Spot 3 Etching for MEMS: solutions

Through-wafer square nozzle

Design a step-by-step process flow which creates a square hole.

Give your assessment what is the smallest practical nozzle size.

The red triangles depict dicing saw that will be used to detach the chips from each other.

Simple square hole

Through-wafer round nozzle

Design a step-by-step process flow which creates this nozzle.

Only wet etching process are used !

Thermal diffusion is used for doping.

Estimate which nozzle opening sizes are feasible with 3 µm litho available.

p++ etch stop: nozzle

<100> DSP wafer

Thermal oxidation, both sides oxidized

Lithography on front Oxide etching, front, RIE (ox back not) Resist strip Wafer cleaning Boron diffusion

Oxide removal Another thermal oxidation (p++ area oxidizes slower than standard doping silicon)

Lithography on back Oxide RIE etching (oxide remains front) Resist strip

p++ etch stop: round nozzle

KOH etching from back (front protected by oxide)

P++ layer will stop etching elsewhere, but not in the round central spot.

Oxide is removed in HF

Another thermal oxidation to passivate all surfaces.

Round hole size

Round hole size

Lithography Oxide etching These are well controlled, ±0.5 µm

Boron diffusion: need high concentration and deep (e.g. $3 \mu m$) $\rightarrow 3 \mu m$ sideways diffusion also

Final oxidation narrows the hole a bit: 500 nm thick oxide consumes ca. 250 nm of silicon \rightarrow narrowed from both sides \rightarrow 500 nm narrowing

Critical vs. non-critical masks

Mask #1

Mask #2

With DRIE

Simple blanket diffusion

-eliminates diffusion narrowing

-allows narrow spaces, too (with p⁺⁺ diffusion+wet etching process you can get small holes, but not closely spaced holes)

-DRIE enables any shape (difficult to make corners by diffusion) and is independent of doping level

Which is done first: KOH or DRIE ?

p⁺⁺ & silicon DRIE

- 1. p++ diffusion on both sides
- 2.Top side litho (small holes)
- 3. Si DRIE + resist strip
- 4. LPCVD nitride (both sides coated)
- 5. Backside litho (large opening)
- 6. RIE nit/p++ Si + strip resist
- 7. Silicon KOH etch
- 8. Isotropic CF_4 etch of nitride

Why is resist mask enough i_ #3 !

V 2.0: p++ & DRIE

thermal oxide on both sides

etch front oxide 67 RIE (back oxide remains) diffuse boron (ptt)

lithe on front S: DRIE + strip resist

1 · · · ·

thermal oxidation (oxide on back will grow thicker)

litho on back Oxide RIE KOH etching Si (HF etch of oxide)

V3.0: p++ & DRIE

- 1. p++ diffusion on both sides (3 µm deep)
- 2. Thermal oxidation (both sides, 1 µm deep)
- 3. Litho on bottom (large opening)
- 4. Oxide RIE + strip resist
- 5. KOH etch Si
- 6. Front side litho (round holes, 3 µm in diameter)
- 7. Oxide RIE + Si DRIE + strip resist