
CS-E4890: Deep Learning

Flow-based generative models

Alexander Ilin

Invertible generative process

• In flow-based generative models, the

generative process is usually defined as

z ∼ pθ(z)

x = gθ(z)

where z is the latent variable and pθ(z) has

a simple tractable density, such as a

spherical multivariate Gaussian distribution:

pθ(z) = N (z; 0, I).

• The function gθ is invertible (bijective).

• Inference is done by z = fθ(x) = g−1
θ (x).

• Compare to the generative model that we

considered with variational autoencoders:

z ∼ pθ(z)

x = gθ(z) + ε

• gθ(z) was not generally invertible

• one could add extra noise ε.

• Because of this, it was not possible to

recover z from x easily. We had to design

an inference procedure that involved

approximations q(z) ≈ p(z | x,θ).

1

Invertible generative process

• In flow-based generative models, the

generative process is usually defined as

z ∼ pθ(z)

x = gθ(z)

where z is the latent variable and pθ(z) has

a simple tractable density, such as a

spherical multivariate Gaussian distribution:

pθ(z) = N (z; 0, I).

• The function gθ is invertible (bijective).

• Inference is done by z = fθ(x) = g−1
θ (x).

• Compare to the generative model that we

considered with variational autoencoders:

z ∼ pθ(z)

x = gθ(z) + ε

• gθ(z) was not generally invertible

• one could add extra noise ε.

• Because of this, it was not possible to

recover z from x easily. We had to design

an inference procedure that involved

approximations q(z) ≈ p(z | x,θ).

1

Normalizing flows

• Flow-based generative models use invertible gθ:

z ∼ pθ(z)

x = gθ(z)

• To implement this idea, we need to construct an invertible

transformation x = gθ(z), z = fθ(x) = g−1
θ (x).

• We can do so by constructing a sequence of invertible transformations:

x
f1←→
g1

h1
f2←→
g2

h2 · · ·
fK←→
gK

z

• Such a sequence of invertible transformations is called a (normalizing)

flow (Rezende and Mohamed, 2015).

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1

2

Learning flow-based generative models

• We can tune the parameters of the model by maximizing the log-likelihood

F(θ) =
1

N

N∑
i=1

log pθ(xi)

• Since mapping x→ z is invertible, we can use the change-of-variables rule:

pθ(x) = pθ(z)

∣∣∣∣det
∂z

∂x

∣∣∣∣
• This yields the log-likelihood for a single datapoint x:

log pθ(x) = log pθ(z) + log

∣∣∣∣det
∂z

∂x

∣∣∣∣ = log pθ(z) +
K∑

k=1

log

∣∣∣∣det
∂hk

∂hk−1

∣∣∣∣
where dhk/dhk−1 is derived using the parametric form of hk = fk(hk−1).

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1

• We need to use transformations hk = fk(hk−1) for which we can easily compute log-determinant

of the Jacobian matrix log | det(∂hk/∂hk−1)|.

3

Real NVP

(Dinh et al., 2016)

https://arxiv.org/abs/1605.08803

Coupling layer

• Suppose we have two variables x1, x2 and a function that maps x = (x1, x2) to y = (y1, y2):

y1 = x1

y2 = g(x2,m(x1))

where g is an invertible map with respect to its first argument given the second one, for example:

g(a, b) = a + b

g(a, b) = ab, b 6= 0

• This mapping is bijective and we can invert the mapping using:

x1 = y1

x2 = g−1(y2;m(y1))

5

Affine coupling layer

• An invertible transformation with two inputs and outputs:

y1 = x1

y2 = g(x2,m(x1)) , g is invertible wrt x2

• We can generalize this idea to vectors x. We can split a vector x

into two halves (x1:d , xd+1:D) and apply the following

transformation:

y1:d = x1:d

yd+1:D = g(xd+1:D , x1:d) = xd+1:D � exp(s(x1:d)) + t(x1:d)

• s and t are functions Rd 7→ RD−d

• � is the Hadamard product or element-wise product

x1:d xd+1:D

y1:d yd+1:D

�

Forward propagation

6

Inverting the affine coupling layer

• Forward propagation

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

• In order to generate samples from the model, we need to invert the

transformation. We do this with inverse propagation through the

layer:

x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d))� exp(−s(y1:d))

x1:d xd+1:D

y1:d yd+1:D

�

Inverse propagation

7

Affine coupling layer: Computation of the Jacobian determinant

• The Jacobian of this transformation is

∂y

∂x

>
=

[
Id 0

∂yd+1:D

∂xT
1:d

diag(exp[s(x1:d)])

]

• Because the Jacobian is triangular, we can efficiently compute its determinant as

det
∂y

∂x
= exp

∑
j

s(x1:d)j

• Since computing the Jacobian determinant does not involve computing the Jacobian of s or t,

those functions can be arbitrarily complex. Dinh et al. (2016) model s and t as deep convolutional

neural networks, whose hidden layers can have more features than their input and output layers.

8

https://arxiv.org/abs/1605.08803

Affine coupling layer: Partitioning

• To apply invertible transformation

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

we need to partition input x into two parts x1:d and xd+1:D .

• Real NVP uses two ways of partitioning: checkerboard pattern and

channel-wise partitioning (in the figure: either black or white elements

remain unchanged).

• Partitioning is implemented using a binary mask b:

y = b� x + (1− b)� (x� exp(s(b� x)) + t(b� x))

checkerboard pattern

channel-wise partitioning

9

Combining coupling layers

• Problem with partitioning: the forward transformation leaves

components x1:d unchanged:

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

• This difficulty can be overcome by composing coupling layers

in an alternating pattern, such that the components that are

left unchanged in one coupling layer are updated in the next.

affine coupling layer

affine coupling layer

affine coupling layer

RealNVP: alternating partitioning

patterns in a stack of affine coupling

layers

10

Squeeze operation

• We often want to reduce the image resolution (e.g., by using strides in convolutional layers).

• In Real NVP, we use the squeeze operation for that.

• We keep the total number of variables same (we need to preserve invertibility).

• We reduce the spatial size but increase the number of channels.

• The squeeze operation transforms an s × s × c tensor

into an s
2
× s

2
× 4c. For each channel, it divides the

image into subsquares of shape 2× 2× c, then

reshapes them into subsquares of shape 1× 1× 4c. squeeze

• For better mixing of the variables:

• The checkerboard pattern is used right before the squeeze operation.

• Channel-wise partitioning is used right after the squeeze operation.

11

Multi-scale architecture

• At each scale, we combine several operations into a sequence:

• three coupling layers with alternating checkerboard masks

• a squeezing operation

• three more coupling layers with alternating channel-wise masking.

affine coupling layer

affine coupling layer

affine coupling layer

squeeze

affine coupling layer

affine coupling layer

affine coupling layer

One block of Real NVP

12

Split operation: Factoring out variables

• For a n × n image with c channels, the number of dimensions in

the input is n2 × c.

• If we propagate all the n2 × c dimensions through all the layers:

• high computational and memory cost

• large number of parameters

• The workaround is to apply the split operation:

• Half of the dimensions are directly passed to the output of the

network and modeled as Gaussian.

• The rest of the dimensions are fed to the next layer.

• The purpose is somewhat similar to using pooling layers in

standard convolutional networks.

At each step, half the variables are

directly modeled as Gaussians,

while the other half undergo

further transformation.

13

Real NVP summary: Three types of blocks

squeeze

Affine coupling layer:

• Keeps the same dimensions.

• Uses either checkerboard or

channel-wise mixing patterns.

Squeeze operation:

• Reduces the spatial resolution by 2 in

each dimension.

• Increases the number of channels by 4.

Split operation:

• Removes half of the

variables from further

computations.

14

Real NVP: Training

• Forward computation:

• Compute z = f(x)

• Compute the Jacobian determinant and the loss

log pθ(x) = log pθ(z) +
K∑
i=1

log

∣∣∣∣det
∂hi

∂hi−1

∣∣∣∣
Recall that the determinant was trivial to compute for the affine coupling layer:

det
∂y

∂x
= exp

∑
j

s(x1:d)j

• Backward pass: compute the gradient of the loss wrt parameters θ of the layers.

15

Generating samples

• Generating samples is trivial:

• Generate z from Gaussian distribution:

z ∼ N (z; 0, I)

• Propagate z through the inverse of f:

x = gθ(z) = f−1(z)

• We simply need to invert each layer starting from the topmost one:

f−1 = f−1
1 ◦ f−1

2 ◦ ... ◦ f−1
K

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1

16

Glow (Kingma and Dhariwal, 2018)

• Glow is further development of flow-based generative

models.

• To a great extent, Glow follows the multi-scale

architecture introduced in Real NVP.

• They introduce a novel “step of flow” block which is

a stack of three layers:

• Actnorm layer (new layer)

• Invertible 1× 1 convolution (new layer)

• Affine coupling layer (same as in Real NVP)

Multi-scale architecture of Glow

17

https://arxiv.org/pdf/1807.03039.pdf

Samples generated with Glow

18

