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Ex4 solutions 2023

1 Explorative exercises

1.1

There exists mn functions from {1, . . . , n} to {1, . . . , m} because for each of the 
n elements we have m choices of where it can be mapped.

1.1.1

For an injective function to exist, we must have that n ≤ m. When we construct 
the function, we have m choices for the first element, m − 1 for the second, and 
so on until for the final element we have m − n + 1 choices. Hence the number 
of injective functions is m! .

1.1.2

For a function to be non-surjective, it has to ”miss” some element of {1, 2}. 
Since there are only two elements, we have only two such functions, one where 
everything is mapped to 1, and another where everything is mapped to 2.

1.1.3

The number of functions where the function ”misses” i ∈ {1, 2, 3} is 2n for each i. 
Summing these up we get 3 · 2n. However, this sum double counts all of the 
functions that map all elements to one element. Hence the final answer is 3 · (2n − 
1).

1.2

We can consider the original set to be an increasing ordering and the map (the 
permutation) as giving the set a new total order by the value they are assigned 
to.

1.3

1.3.1

The permutation (σ(1), . . . , σ(9) = (2, 7, 5, 6, 9, 3, 8, 4, 1) gives the cycle of 
length 9:

1 → 2 → 7 → 8 → 4 → 6 → 3 → 5 → 9 → 1

The permutation (σ(1), . . . , σ(9) = (2, 7, 5, 6, 9, 3, 1, 4, 8) gives the following cycles       

1 → 2 → 7 → 1  and   3 → 5 → 9 → 8 → 4 → 6 → 3
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1.3.2

Yes, bijectivity ensures this. Cycles of length one are also cycles.

2 Additional exercises

2.1

There are 26! permutations for the 26 letters. To find the number of permuta-
tions which do not contain the words ”cats”, ”snow” or ”walk”, let us first find
the number of permutations which do contain them and then substract that
number from 26!.

First, count the number of permutations containing one of the words. We
can consider that word to be a solid block and represent it with a new symbol,
say π. If the set of letters is Σ, then we now have to count the permutations of
(Σ \ {”c”, ”a”, ”t”, ”s”}) ∪ π. That number is 23!.

Let A1, A2, A3 be the sets of permutations containing all permutations which
have the word ”cats”, ”snow” and ”walk”, respectively. Since all words are of
length four, we have that |Ai| = 23!

For A1∩A2, we only have to consider the block ”catsnow”. And thus by the
previous arguments |A1 ∩A2| = 20!. The same also holds for A2 ∩A3, where we
consider the block ”snowalk”, so |A2 ∩A3| = 20!. The words ”cats” and ”walk”
both contain the letter ’a’ in the middle of the word and thus cannot occur at
the same time. Hence |A1 ∩ A3| = |A1 ∩ A2 ∩ A3| = ∅. Let Σ∗ be the set of all
permutations of Σ. By the inclusion-exclusion principle, we get
|Σ∗| − |A1 ∪ A2 ∪ A3| = |Σ∗| − (|A1| + |A2| + |A3| − |A1 ∩ A2| − |A2 ∩ A3|) =
26!− 3 · 23! + 2 · 20!

2.2

2.2.1

Let’s say we first had the pairs (ab), (cd), (ef). Now let’s re-assign the pairs,
starting with choosing a pair for a. There are 4 choices for a. If a was to be
paired with c, then b couldn’t be paired with d, since that would leave the pair
(ef) untouched. Hence there are 2 choices for b. After this choice there is only
one pair left. Thus the answer is 4 · 2 = 8.

2.2.2

Let us take it as a given that the number of ways to divide a group of 2n people

into pairs is f(2n) = (2n)!
n!2n . (This can be shown easily).

Now let A = {a1, a2, . . . , an} be the original set of pairs and let Ai be the
set of pairs where the pair ai is kept the same. It follows that |Ai| = f(2n− 2).
To get the number of ways to form new pairs without anyone having the same
partner, we substract |A1 ∪A2 ∪ · · · ∪An| from the total number of pairs f(2n).

By the inclusion-exclusion principle

|A1 ∪ · · · ∪An| =
n∑

i=0

|Ai| −
∑
i6=j

|Ai ∩Aj |+ · · · − |A1 ∩A2 ∩ · · · ∩An|
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The number |Ai ∩Aj | represent the number of pairings where there are the
pairs ai ja aj . So we find that |Ai ∩Aj | = f(2n− 4). The sum over all of these
terms is equal to

(
n
2

)
f(2n−4). Same argument can be repeated for k fixed pairs,

i.e.
(
n
k

)
f(2n− 2k) is the number of pairings where some k pairs are fixed. The

final answer becomes

f(2n)− |A1 ∪ · · · ∪An| =
n∑

k=0

(−1)k
(
n

k

)
f(2n− 2k)

2.3

2.3.1

Product of disjoint cycles:

(1362)(2564)(2345) = (13)(5)(264)

2.3.2

Two line notation:

(1362)(2564)(2345) =

(
1 2 3 4 5 6
3 6 1 2 5 4

)
2.3.3

Product of transpositions:

(1362)(2564)(2345) = (13)(24)(26)

2.4

Let ρ = (123) and π = (12) in S3

2.4.1

We see that π2 is clearly the identity. For ρ3 we have

(123)3 = (123)(123)2 = (123)(132) = ι

2.4.2

S3 = {ι, (12), (13), (23), (123), (132)}. We find that

π (12)
ρ (123)
ρ2 (132)
πρ (23)
πρ2 (13)
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2.5

2.5.1

ρ = (abdc)(efhg), σ = (acge)(bdhf), τ = (abfe)(cdhg)

2.5.2

ρσ = (bce)(dgf), στ = (che)(dfa), τρ = (fga)(hcb)

2.5.3

24, see next part.

2.5.4

There are 24 rotational symmetries of a cube, one of which is the identity
map. We get 9 other symmetries by the powers of ρ, σ and τ , the symmetric
representations of these are already explained in the question. The we have
the diagonal axis of symmetry, which keep two the the corners fixed. These
are represented with powers of ρσ, στ and τρ from part b) and the powers of
τσ. There is a total of 8 of these symmetries. Finally, we have six symmetries
that fix two edges, one such symmetry would be (ab)(gh)(cf)(de), where the
fixed edges are (ab) and (gh). The corners of the fixed edges swap and other
corners swap diagonally. There are a total of six of these symmetries and they
are represented by combinations of powers ρ, τ , and σ mixed together. The
example symmetry is given by σ−1ρ2 = σ3ρ2 = (ab)(gh)(cf)(de).

The final answer is: there are 24 symmetries of a cube (1+9+8+6) and they
can all be written as products of the given operations.

2.6

Let |A∩B| = |A∩C| = |B∩C| = m. Note that A∩B∩C = ∅ ⇒ |A∩B∩C| = 0.
From the inclusion-exclusion principle it follows that

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|
2n = 3n− 3m

n = 3m

Thus these condition can only be true when n is divisible by 3.

2.7

2.7.1

See Figure 1 for the set up. Let’s start by pairing a. It has three choices. If a is
paired with c or e, it leads to only one possible pairing. Since if a chooses c, the
only valid choice for b is e. Same holds, if a chooses e. So that’s two possible
pairings. If a is paired with d, then b has two choices. Thus the number of
pairings is 4.
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Figure 1: Visualisation of the problem

2.7.2

The answer is
n∑

k=0

(−1)kP (n, k)(2n− 2k − 1)!!,

where P (n, k) =
(
2n−k

k

)
+
(
2n−k−1

k−1
)

and (2n−2k−1)!! = 1 ·3 ·5 · · · ·(2n−2k−1).
The equation comes from the inclusion-exclusion principle. Here P (n, k) is the
number of ways to choose k pairs of adjacent people in the circle. The multiplier
(2n− 2k − 1)!! is the number of ways to pair up the rest of the people.

2.7.3

Overlapping pairs make this problem more difficult and the coefficient more
complicated.

2.8

For any element a ∈ A or any element b ∈ B, let us consider the chain

· · · → f−1(g−1(a))→ g−1(a)→ a→ f(a)→ g(f(a))→ · · ·

This chain may terminate to the left if the inverse function does not exist. By
injectivity of both f and g, every element has exactly one such chain. Therefore,
if an element occurs in the the chain, the chains for these two elements are the
same. Thus we have a partition for the set A∪B. Hence it suffices to construct
separate bijections for these partitions. If a sequence stops at an element in A,
then f is a bijection for it. Similarly, if a sequence stops at an element of B,
then g is the bijection. Finally, if the sequence never stops, either one of f or g
will work as a bijection.

This is known as the Schröder-Bernstein Theorem.
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