Aalto University

Björn Ivarsson, 050-4067 832
Course Exam, Wednesday 19.04.2023, 09:00-12:00
Exam, Wednesday 19.04.2023, 09:00-12:00
Differential and Integral Calculus 3, MS-A0311
No calculators or tables of formulas allowed. See backside for the allowed collection of formulas!

Motivate your answers. Only giving answers gives no points. The course exam consists of the four exercises with best result out of exercise $1,2,3,4$, and 5 . The exam consists of exercise $1,2,3,4$, and 5 . If you prefer you can do all five exercises and I will evaluate using "the result on the course exam + points given during the course" or "the result on the exam". The alternative giving the best grade will be used.

Good luck!

Useful theorems and formulas:

- Green's Theorem:

$$
\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\oint_{\gamma} \mathbf{F} \cdot d \mathbf{r}
$$

- Stokes's Theorem:

$$
\iint_{S}(\operatorname{Curl} \mathbf{F}) \cdot \mathbf{n} d S=\oint_{\gamma} \mathbf{F} \cdot d \mathbf{r}
$$

- Gauss's Theorem:

$$
\iiint_{D}(\operatorname{div} \mathbf{F}) d V=\oiint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

- Gradient in a orthogonal curvilinear coordinate system $[\hat{u}, \hat{v}, \hat{w}]$,

$$
\nabla f=\frac{1}{h_{u}} \frac{\partial f}{\partial u} \hat{u}+\frac{1}{h_{v}} \frac{\partial f}{\partial v} \hat{v}+\frac{1}{h_{w}} \frac{\partial f}{\partial w} \hat{w}
$$

- Divergence in a orthogonal curvilinear coordinate system $[\hat{u}, \hat{v}, \hat{w}]$,

$$
\operatorname{div} \mathbf{F}=\frac{1}{h_{u} h_{v} h_{w}}\left(\frac{\partial}{\partial u}\left(F_{u} h_{v} h_{w}\right)+\frac{\partial}{\partial v}\left(F_{v} h_{u} h_{w}\right)+\frac{\partial}{\partial w}\left(F_{w} h_{u} h_{v}\right)\right)
$$

- Curl in a positively oriented orthogonal curvilinear coordinate system $[\hat{u}, \hat{v}, \hat{w}]$,

$$
\operatorname{Curl} \mathbf{F}=\frac{1}{h_{u} h_{v} h_{w}}\left|\begin{array}{ccc}
h_{u} \hat{u} & h_{v} \hat{v} & h_{w} \hat{w} \\
\partial / \partial u & \partial / \partial v & \partial / \partial w \\
h_{u} F_{u} & h_{v} F_{v} & h_{w} F_{w}
\end{array}\right|
$$

