Optical microscope, Raman spectroscopy, and Photoluminescence measurement in two-dimensional (2D) materials

_____ Youqiang

1

Contents

Theory

- □ Optical microscope
- □ Raman spectroscopy
- □ Photoluminescence measurement

Measurement setup and sources of the uncertainty

No details about principles and equations

But some useful information on how to apply them in 2d materials

2d materials on a substrate

The emerging of the graphene open a new world in materials science

Various groups of 2D materials

Optical microscope

A? Background-optical microscope

A? Background-optical microscope

4th floor

There are several microscopes our group member used

Nanotalo

F13 in the cleanroom

The diagram of the transferring system

The schematic view of exfoliating 2d materials and stacking them

A library for quickly identifying the layer number

ACS Nano 2013, 7, 11, 10344-10353

ACS Nano 2013, 7, 11, 10344-10353

Different thickness with different color

The colors of a soap film assuming sunlight with normal angle of incidence

$$2n_2d\cos\left(heta_2
ight)=m\lambda$$

Thin-film interference

ACS Nano 2021, 15, 7, 11898-11907

AFM

Optical images

Optical contrast generated by ImageJ software

Differential Interference Contrast 15

Bright field mode

DIC mode

Raman spectroscopy

A? Raman spectroscopy on 2d materials

Brief overview of Raman signal

A? Raman spectroscopy on 2d materials

https://doi.org/10.1016/j.surfrep.2015.10.001

A? Raman spectroscopy on 2d materials

20

Photoluminescence (PL)

Light excite electrons to a higher energy level in an atom and then go to lower energy and release the energy by emitting photons

Rare earth ions

An **exciton** is a <u>bound state</u> of an <u>electron</u> and an <u>electron hole</u> which are attracted to each other by the electrostatic <u>Coulomb force</u>. (From Wikipedia)

PL identify the layer number

Excitons are demonstrated as a bridge between photons and electrons

Time resolved photoluminescence

Sketch of the experimental setup. Red lines: excitation laser; blue lines: reflected laser and emitted photons.

TCPCM-Time correlated photon counting module

APD-Avalanche photodiode

Nature photonics, 2022, 16(1): 79-85

Expansion of an exciton cloud

Control of the exciton flux by applying an electric field 27

Nature photonics, 2022, 16(1): 79-85

The layer number of the 2D materials can be characterized by several methods

Measurement setup and sources of uncertainty

PL measurement setup

Temperature sensor

Powermeter

Using a CMOS imaging camera for the quality of the alignment

We do manually

Good alignment

Out of focus

A? PL Mapping

Power (nW)	894.33	894.89	893.59
X (um)	1792.686	1792.193	1791.838
Y (um)	1272.503	1272.458	1272.652
Z (um)	2355.908	2356.098	2355.888

A? Spectrograph without proper calibration

Not proper calibration

AR Background

A? Power dependent emission

Equation	y = a + b*x	
Plot	A78550mw1s300_U	
Weight	No Weighting	
Intercept	10058.78411 ± 425.11605	
Slope	1142.36166 ± 15.10902	
Residual Sum of Squares	2396966.37717	
Pearson's r	0.99939	
R-Square (COD)	0.99878	
Adj. R-Square	0.9986	

Anatomy of a Microscope | Microscopy Primer | Olympus LS (olympus-lifescience.com)

https://wiki.aalto.fi/display/SSC/Raman+Spectroscopy

https://www.microscopyu.com/tutorials/wavefront-relationships-in-reflected-light-dicmicroscopy