MEMS 2: Bulk, SOI & CMOS-integrated (Chapter 30)

sami.franssila@aalto.fi

MEMS device categories

- Bulk vs. SOI vs. surface vs. CMOS-MEMS
- Double sided lithography
- Membranes and beams
- Needles in-plane and out-of-plane
- Cavity-SOI (C-SOI)
- MEMS zero-level packaging

Types of MEMS

Surface MEMS: thin films etched Bulk MEMS (=silicon wafer etching involved)

KOH or DRIE ?

Bonding involved or not?

In-plane or out-of-plane structures ? Thru-wafer structures (holes) Membrane structures (no holes)

Single litho bulk-MEMS

Cantilevers: -resonant sensors -bending sensors -thermal isolation structures

Lee et al: http://iopscience.iop.org/0960-1317/19/11/115011)

SOI accelerometer

One-dimensional accelerometer: P1 right-hand side piezoresistor expands, P4 RHS resistor contracts; left-hand sides act as reference electrodes.

Single lithography step fabrication.

DRIE of SOI device layer.

Wet etching of buried oxide (BOX) in HF.

Surface vs. SOI-MEMS

Surface MEMS: functionality is above the silicon wafer. CMOS wafer is the "passive" during MEMS fabrication, but active during device operation.

Bulk/SOI MEMS: we process the silicon itself (in this case SOI device and handle wafers are both etched)

Double side alignment

Alignment

Double sided lithography requires DSP wafers (Double Side Polished)

Some alignments are critical but not all !

Often the backside structures are large, and not critically aligned to top side features.

Critical backside alignment: diffused piezoresistors

Piezoresistors have to be positioned at the maximum defelection region.

Resist over 3D topography

a) spin coated; b) spray coated; c) cast; d) laminated dry film.

Lithography over topography

Sensors and Actuators 76 1999. 329–334

Peeling masks: two masks before etch

Litho 1 + etch mask material 1 Litho 2, still planar surface Etch 1 using mask 1 Remove mask 1 Etch 2 using mask 2

Mask 1: resist

а

Mask 1: oxide Mask 2: nitride

Fig. 21.17

b

Mask 2: oxide

Figure 20.4

Also known as nested mask

Capacitive accelerometer

Bulk MEMS, wet etching

Accelerometer courtesy Murata

Pressure sensor deflection

Simple membrane → Not a parallel plate capacitor Hinged membrane: → Parallel plate capacitor

Thermal pressure sensor

Bulk-MEMS with surface functionality

Bulk silicon etching is used to thermally isolate surface-MEMS functionality.

Etch selectivity between Si and AI: use TMAH etchant

Ogawa, Masuda, Takagawa, Kimata: *Opt. Eng.* 53(10), 107110 (2014)

Wet vs. dry Si etch

Isotropic silicon etch, SF₆ plasma, or XeF₂, selective against metals and SiO₂.

Ogawa, Masuda, Takagawa, Kimata: *Opt. Eng.* 53(10), 107110

Hemispherical shapes

Gray et al: J. Micromech. Microeng. 24 (2014) 125028 (9pp)

Out-of-plane needles

Micralyne

Solid silicon needles

Hollow silicon needles

Porous tip silicon needles

Transdermal drug delivery systems for fighting common viral infectious diseases •DOI: •10.1007/s13346-021-01004-6

In-plane needle on SOI

Electrophysiological measurements (brain electrical signaling)

Neural probe with an optical waveguide for optical stimulation, microfluidic channels for drug delivery, and microelectrode arrays for recording neural signals

۵.,

Norlin et al: J. Micromech. Microeng. 12 (2002) 414-419

Cavity-SOI (C-SOI)

C-SOI specifications

Cavity dimensions vs. SOI thickness

Luoto et al. "MEMS on cavity-SOI wafers." Solid-State Electronics 51.2 (2007): 328-332.

C-SOI MEMS benefits

High quality single crystal silicon of device layer as mechanical material, as in SOI always.

Reduce number of process steps.

No wet etching, no surface tension and drying effects in small cavities.

Cavity-SOI resonator

- 1. Al sputtering
- 2. Litho
- 3. Al etch & strip
- 4. CVD oxide
- 5. Litho & contact hole etch

CMOS-MEMS integrated

CMOS first MEMS in silicon MEMS in IC thin films MEMS thin films specifically MEMS first plug-up SOI polysilicon thin film MEMS Integrated processes

Integrated hot plate sensor

CMOS first + bulk MEMS

Figure 30-13

In-plane integrated CMOS microneedle for electrophysiological measurements by Ji and Wise (1992). Reproduced from Brand (2006), copyright 2006, by permission of IEEE.

CMOS first, no additional films

a) thin film MEMS by front side dry plasma release; b) single crystal silicon MEMS byDRIE

CMOS-MEMS Piezoresistive Accelerometer

Khir Sensors 2011, 11, 7892-7907;

CMOS-MEMS in six ways

Design of MEMS elements separate from CMOS.

Bulk-MEMS

Separate process steps for MEMS.

Bulk or SOI-MEMS

Design of MEMS elements is part of CMOS design.

MEMS and CMOS use same thin films.

MEMS packaging

Capping wafer Thin film sealing

Zero-level package by thin films

(C) First thin film packaging layer deposition.

(d) Etching holes on the first thin film packaging layer.

(f) Sealing the package by another thin film layer.

Packaging by deposition

Release hole defined by lithography

Conformal deposition of sealing material required.

Release hole defined by thin film deposition

Conformality of sealing material deposition not required.

Introduction to Microfabrication Sami Franssila © 2010 John Wiley & Sons, Ltd

Problems with thin film roofs

a) cracks

b) outgassing

c) collapse

Zero-level package by bonding

Tilmans, Witvrouw: Microel. Rel. 2012, https://doi.org/10.1016/j.microrel.2012.06.029

Hermeticity

Tilmans, Witvrouw: Microel. Rel. 2012, https://doi.org/10.1016/j.microrel.2012.06.029

Gettering

Removal of residual gas from a partial vacuum by use of a getter. Getters are reactive metals, e.g. titanium, which readily reacts with oxygen, forming solid TiO_2 , and lowering pressure.

