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Introduction 
• We will examine the nonidealities associated with resistive memory
crossbars and their effects on the performance of neural network (NN)
accelerators.

• Our focus will be on resistive memory crossbar, which have gained
significant interest in realizing NN accelerators due to their efficiency in
carrying out vector-matrix multiplication (VMM).

• A crossbar array consists of a grid of horizontal and vertical wires, with
resistive memory elements located at each intersection.

• Resistive crossbar may be designed using a range of emerging devices (e.g.,
memristors, ReRAM, or PCM devices).

• Typical resistive crossbar operation:
Digital inputs are first converted to voltages and applied to the rows of the
crossbar (which is programmed with the weights as conductances), and the
resulting column currents are converted back into digital form.
• Various device- and circuit-level nonidealities can lead to errors in the
computed VMMs.

3

Resistive crossbar array

* JAIN et al. “RxNN”

*



Compensation techniques

Types of compensation techniques:

• Device-level: 
- Crossbar memory devices technology.

• Circuit-level: 
-Accelerator’s architecture, e.g., DNN, CNN. 
-Representation of the input signal.

• Algorithm-level: 
-Accelerator for inference or inference\training.
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Crossbar memory devices technology

*Xiao et al. “Analog arch.”

*
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• ReRAM features: excellent scalability, BEOL compatibility, variable conductance, low write 
energy and latency, and high endurance.

• In this presentation, we will assume the use of ReRAM to create crossbar arrays and to study the 
nonidealities associated with these devices.



Architectures of artificial neural network

Convolutional neural networks (CNN)Deep neural networks (DNN)

*Xiao et al. “Analog arch.”

*
*
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• Use fully-connected layers.
• Requires many trainable parameters.
• Suitable for problems where the input data doesn't have a 

specific spatial structure.
• Machine learning tasks: speech recognition and natural 

language processing.

• Use convolutional layers.
• Reduced number of trainable parameters.
• Suitable for for processing grid-like data, e.g., images.
• Machine learning tasks: image classification and object 

detection.



Representation of input signals

* Xiao et al. “Analog arch.”

*

Four different schemes for representing the crossbar input signal 
and the associated peripheral circuitry in the signal path.
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(a) In Amplitude encoding:
• The entire VMM can be completed in a single

crossbar read operation.
• Latency does not scale with the input’s

precision.
• DAC’s area and power consumption could scale

exponentially with the DAC resolution.
(b) In Temporal encoding:
• Inputs are represented with a pulse having a

fixed amplitude and variable duration.
• Latency will increase exponentially with the

computation resolution.



Accelerators for inference and training
Although they share some standard features, the unique requirements of each task lead to several
architectural differences:

- On-chip vs. off-chip training: Inference acc. -> off-chip training. Training acc. ->  on-chip training.

- Architecture complexity: Inference acc. are less complex than training acc.
(training acc. perform forward propagation, backpropagation, weight updates, and loss calculations.)

- Hardware requirement: Training acc. require additional hardware components compared to inference acc.
(e.g., additional memory to store intermediate results, specialized circuitry for gradient calculations, and 
mechanisms for weight updates).

- Precision requirement: Training acc. demand higher precision to ensure the convergence 
and stability of the learning process.

- Power consumption and energy efficiency: training acc. consume more power and have lower energy 
efficiency compared to inference acc. 
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Resistive Crossbar Nonidealities

* JAIN et al. “RxNN”

*
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Non-ideal DACs

* JAIN et al. “RxNN”

*

10



Sneak Paths During VMM

*Xiao et al. “Analog arch.”
**JAIN et al. “RxNN”

Ideal Current Paths* **
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• Due to parasitic wire resistances, the internal node
voltages may vary, resulting in additional current
paths, known as sneak paths.

Expected Path

Example for a given crossbar state 



Crossbar dimension 

Sensitivity to Crossbar Size for Various Crossbar Dimensions 

RMAX RMIN

Error percentage ∝ Crossbar dimension:

1) Wire resistances increase.
2) Variability of DAC load resistance increases.
3) Variability of BLs resistance increases.

* JAIN et al. “RxNN”

*
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• The errors due to a combination of nonidealities, or
individual nonidealities, increase with crossbar dimension.



Other Errors

* JAIN et al. “RxNN”

*
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• Errors during the right operation of
the resistive memory devices.

• Errors due to the variation of the
resistive memory device conductance.



Sneak paths solutions
• Multistage reading by HP Labs team, the reading procedure is given as:

(1) Perform current measurement in the path for the target memory cell.
(2) Put the target memory cell in the OFF state, and perform current measurement in the path for the target 

memory cell.
(3) put the target memory cell in the ON state, and perform current measurement in the path for the target 

memory cell.
(4) Based on these three current measurements, the memory cell’s initial state is decided.
(5) Return the memory cell to its (assumed) original state.

This adaptive measurement algorithm:

(1) Requires a large amount of time.
(2) Requires large sensing circuits (three sample-and-hold circuits, a voltage comparator, voltage divider, and 

control circuits).
(3) This technique will also be inefficient for the narrow noise margins at large array sizes, since the effect of 

sneak paths will dominate, and the resistance value of the target cell will be negligible. 

* DOI: 10.1088/0957-4484/20/42/425204

*
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Sneak paths solutions
• Unfolded architecture solution:

(1) This method is is based on having a separate column for each memristor. 
(2) This method eliminates the sneak paths problem entirely.
(3) It enormously reduces the crossbar density.

* DOI: 10.1145/1785481.1785548

• Complimentary memristors solution:

(1) In this technique two complimentary memristors are used as the memory cell, so that their total resistance is 
always (Ron + Roff ).

(2) Having always a high resistance cell reduces the sneak-path current significantly.
(3) This method requires a complex reading technique.

Unfolded architecture 
*
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Sneak paths solutions
• Transistor gating (1T1R) architecture:

(1) One commonly used solutions for the sneak paths is adding a transistor in
series to each memory cell.

(2) Producing a new cell of one transistor and one resistor/memristor
(1T1R/1T1M), which is a three-terminal device.

(3) The transistor gate makes the third terminal to control the access to the
memory device during writes.

(4) This method will reduce the high memristor-memory crossbar density, since
the gating transistor’s size is much larger than the memristor’s.

(5) Using small transistors will reduce the sneak paths but it will not eliminate it,
since small-size transistors introduce higher leakage currents.

(6) Additional wires are required (Source-Lines) to control the transistors’ gates.

1T1R crossbar

*Xiao et al. “Analog arch.”

*
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Mitigating parasitic resistances
(1) The parasitic wire resistances include parasitic voltage drops that

cause errors in the output currents.
(2) This effect grows linearly with the crossbar array size.

Conversion algorithm:

(1) A matrix is first linearly mapped to an ideal memristor crossbar to
get the ideal crossbar behavior.

(2) It assumes the ideal crossbar has zero wire resistance, a perfectly
linear I-V relationship in the memory devices, and zero noise.

(3) The conversion algorithm then simulates the actual (non-ideal)
current and voltages across the realistic crossbar array and tunes the
device conductances to match the current that should pass through
each memory device in an ideal crossbar.

(4) After the conversion, a close-loop tuning scheme is used to program
memristors to the desired conductance value.

DPE workflow

* DOI: 10.1145/2897937.2898010

*
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Mitigating parasitic resistance
Proportional Mapping:

(1) A very common property of neural networks is the abundance of low-valued or
zero-valued weights.

(2) Make use of zero and small-valued weights in analog accelerators by using
proportional mapping.

(3) Proportional mapping: a linear relationship between numerical values in the
algorithm and the physical quantities in the analog hardware.

(4) Weight values are mapped to conductances in proportion to their magnitude.
(5) This method requires using cells with a high On/Off ratio (Gmax/Gmin).
(6) The method reduces the average cell conductance by orders of magnitude.
(7) Reduction of the average conductance proportionally decreases the memory

device programming errors and parasitic voltage across the crossbar columns
and rows.

*

*Xiao et al. “Analog arch.”
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Mitigating parasitic resistance
Other methods to mitigate errors due to parasitic voltage drops:

(1) Adding series resistances to the output periphery of the array to equalize the parasitic voltage 
drops seen by all parts of the crossbar.

(2) Another method shows that a neural network can learn around the parasitic voltage drops by 
modeling their effect as an injection of Gaussian noise on the VMM results during training. 

[1] S. Agarwal, R. L. Schiek and M. J. Marinella, "Compensating for Parasitic Voltage Drops in 
Resistive Memory Arrays," 2017 IEEE International Memory Workshop (IMW), Monterey, CA, 
USA, 2017, pp. 1-4, doi: 10.1109/IMW.2017.7939075.

[2] Z. He, J. Lin, R. Ewetz, J. -S. Yuan and D. Fan, "Noise Injection Adaption: End-to-End ReRAM 
Crossbar Non-ideal Effect Adaption for Neural Network Mapping," 2019 56th ACM/IEEE Design 
Automation Conference (DAC), Las Vegas, NV, USA, 2019, pp. 1-6. 19



Compensating for device nonidealities

*

*

* DOI: 10.1038/s41467-020-16108-9

(1) This method focuses on phase-change memory
devices.

(2) Injection of Gaussian noise into the matrix
weights during training.

(3) Errors due to read and write noises are injected as
a Gaussian distribution, which is usually the case
for analog memory devices.

(4) Adding noise to the weights only in the forward
propagation is sufficient to achieve close to
baseline accuracy.

(5) The tests are performed for ResNet-32 neural
network model on the CIFAR-10 dataset.

(6) The results show that performing training by
injecting Gaussian noise has the best overall
performance.
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Compensating for process variation

* DOI: 10.5555/3130379.3130384

(1) Process variations or defects can be suppressed by an appropriate
re-mapping of the neural network weights to the hardware.

(2) * Proposes a scheme to assign the rows of the weight matrix to
the crossbar rows in a way that minimizes the expected deviations
on the column outputs due to cycle-to cycle variability.

(3) Inject resistance-variation matrix Tmxn with the weight matric
Wmxn.

(4) Find one weight-memristor mapping with the largest summed
weighted variations.

(5) The neural-network is re-trained with a small learning rate.
(6) Validate the training process by testing the derived neural-

network and by checking the convergence of the training process.
(7) The iterative procedure goes on as long as the training process is

not convergent, or the test rate can still be promoted.
(8) Otherwise, the algorithm terminates and returns the new weight

matrix.
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Suppressing error propagation
(1) High accuracy can be obtained with sufficiently precise cells and proportional errors, even if analog errors

propagate from layer to layer in a DNN.
(2) With less precise cells, some works have relied on ADC quantization to cut off the propagation of device errors.

Advantages of using ADC:
(1) They are necessary to integrate a memristor-based analog VMM module into the digital environment, as functions

like pooling, ReLU, and normalization still need digital implementation.
(2) The calibration step can be performed at the ADC stage to improve crossbar results further.
(3) ADC provides quantization, which is helpful in filtering out the output error of memristor-based analog VMM

modules, to prevent the error accumulation of inter- and intra-layers in DNNs.
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Conclusion 

• Analog accelerators face unique challenges that arise from the 
crossbar geometry and from the individual memory devices that 
constitute the crossbar. 
• Nonideal physical properties of the devices can be compensated 

using circuit-level techniques.
• Another general approach that is gaining popularity is to learn 

around these non-idealities by designing the neural network training 
algorithm with the specific devices or array/circuit effects in mind.
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Assignment 

• Summarize in one paragraph the method used in [1] or [2] to mitigate 
the errors due to parasitic voltage drops generated from wires parasitic 
resistances. 

• For [1] read section II.A (Parasitic compensation)
• For [2] read section 4 (4.2 & 4.3).

[1] S. Agarwal, R. L. Schiek and M. J. Marinella, "Compensating for Parasitic Voltage Drops in 
Resistive Memory Arrays," 2017 IEEE International Memory Workshop (IMW), Monterey, CA, 
USA, 2017, pp. 1-4, doi: 10.1109/IMW.2017.7939075.

[2] Z. He, J. Lin, R. Ewetz, J. -S. Yuan and D. Fan, "Noise Injection Adaption: End-to-End ReRAM 
Crossbar Non-ideal Effect Adaption for Neural Network Mapping," 2019 56th ACM/IEEE Design 
Automation Conference (DAC), Las Vegas, NV, USA, 2019, pp. 1-6. 25


