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Motivation: efficient edge AI?

Hardware “accelerators” [1]

GPUs
ASICs

Efficiency 
x100

Top 1 accuracy on ImageNet [2]

resNet18=0.010 
GFLOPs 

coatNet=1000 
GFLOPs 

Computations 
x105

Although we develop more efficient accelerators, the size of NN models 
explode ➔ We need to explore alternatives

[1] https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator

[2] https://paperswithcode.com/sota/image-classification-on-imagenet

We need models that are generative (use them for various applications), 
and more compact (to be embedded online)

We look at probabilistic models and probabilistic circuits (PCs)



Probabilistic circuits: training

Training involves both structure and parameter learning [3]

Structure learning:

• Active research topic

• Example with LearnSPN

• Iterative clustering (+) and 
independence tests (x)

Parameter learning:

• Main algorithm is expectation-maximization [4]

• Idea: Find the best likelihood under missing data 
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[3] Y. Choi, A. Vergari, and G. Van den Broeck, “Probabilistic circuits: A unifying

framework for tractable probabilistic models,” oct 2020.



A variety of PC implementations
Vectorized PCs
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Sum and products 

concatenated as 

vectors

Hyperparameters

control the structure 

(vector size, depth..)

RAT-SPNs [9], Einets [10]

Arithmetic Circuits

(ACs)

Compiled from 

Bayesian networks

ACE [5]

The compilation 

gives a fixed 

structure
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Sum-Product 

Networks (SPNs)

Learned from data

Example: recursive 

learning through 

independence tests 

and clustering

LearnSPN [6], LibSPN [7]

Structure 

Decomposable PCs

Impose extra 

structural constraints 

for more tractability

SDPCs [8]

The extra constraint 

can modify the 

structure

The PC is 

normalized to a 

vtree (binary tree)

[5] UCLA ACE compiler        [6] Poon & Domingos, 2011             [7] Pronobis et al., 2007

[8] Dang et al., 2020 [9] Peharz et al., 2019                    [10] Peharz et al., 2020 



Basic structure of a PC

We can compute queries as Most 

Probable Explanation (MPE)   

• (+) replaced by (max)

• Result in one pass
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Composed (at least) of three types of nodes:

• Sums represents mixture distributions

• Products represent factorizations over variables

• Leaf nodes that can be:
• Univariate probability distributions

• Binary indicators saying if a variable is observed or not (λ)

Parameters (ϴ) are probabilities

P(V,P,T)



ProbLP [11] 

Main Idea: A holistic framework to automate the design of low-precision custom hardware for 

ACs.

• Get a model , evaluate error bounds and determine optimal 

representations for a given requirements set.

• Increments the number of fraction bits for fixed-point representation 

until the error requirement is met.

• Increments the number of float bits for mantissa in floating-point 

representation until the error requirement is met.

• Estimates the minimum number of integer and exponent bits using 

min and max analysis.

• The analysis involves considering the extreme values and 

boundaries of the range, taking into account both the precision 

requirements and the constraints of the system or problem at hand. 

• Selects between fixed-point and floating-point representations 

based on energy consumption, estimated using operator-level 

energy models in TSMC 65nm technology.

[11] shah et al., 2019



ProbLP

Hardware generation after deciding a selected representation for the given model.

• The hardware generation process consists of two main stages: 

operator decomposition and pipeline register insertion.

• In the first stage, AC operators with more than two inputs are 

decomposed into a tree structure of 2-input operators. This 

decomposition helps in optimizing the hardware implementation.

• In the second stage, the generator inserts pipeline registers after 

every operator. This step ensures proper timing and can involve 

inserting multiple registers when there is a timing mismatch in a 

specific path.

• The analytically simulated results are verified with the generated 

RTL using modelsim. 

• The default error tolerance is set at 0.01, and increasing energy 

efficiency can be accomplished by allowing for more relaxed error 

tolerances.



HW Aware PC [12]

Main Idea: To propose a resource-aware cost metric that considers hardware constraints and specifications to determine

efficient deployment of probabilistic models in edge computing and enabling optimal device settings for meeting user

requirements.

• Framework utilizes tractable probabilistic models, which enable efficient inference and possess desirable traits such as robustness to missing data, 

joint prediction capabilities, explainability, and minimal data requirements.

• Four key system properties determine the hardware-aware cost versus task performance trade-off in the system: inference model complexity (α), the 

type and number of sensors and features (F, S), and the number of bits used for computations (nb).

• The search process occurs in multiple consecutive stages based on the specific task (classification or density estimation), the type of input to the 

model learning strategy (data or probabilistic model), and the hardware capabilities (support for low precision arithmetic, for example).

[12] Olascoaga et al., 2020



GPU becomes a bad choice ! 

A GPU (Graphics Processing Unit) consists of multiple processing units

called threads, which work together in groups called warps. These warps

can access shared memory, a space all threads within a GPU can use.

If multiple threads within a warp want to access the same part of the

shared memory simultaneously, it can create a problem known as a bank

conflict and this slows down the overall performance of the GPU. A

solution is to employ coloring-based bank allocation algorithm.

Use of 256 threads, however, only increases the throughput by a factor

4.1x, a sublinear scaling due to the following reasons:

• Overhead of thread synchronization.

• Secondly, the shared memory in the Jetson TX2 GPU, which has

32 banks distributed among 128 CUDA cores, has limited

bandwidth. Since all the threads need to read from and write to the

shared memory, its bandwidth becomes a bottleneck. This limitation

in bandwidth can restrict the speed at which data can be

transferred, thereby reducing the potential performance gains.

• Thread divergence due to selection between sum and product

operations leads to inactive threads in a warp.



Accelerate PCs?
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Possible accelerator: 

• Trees of processing elements (PEs)[13] 

• An optimizer decomposes the graph 

across computation units (CUs) [14]
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Specificities of PCs

• Irregular graph = less parallelism

• High computation resolution 

(20-50 bits in float)= more energy

[13] Shah et al., DATE 2020

[14] Shah et al.,GraphOPT,2021



Probabilistic Inference Unit (PIU) [15]

The PIU solution :

a) Stream-based compute with a co-optimized memory hierarchy:

•It utilizes a stream-based computation approach, where data flows through the processor in a streaming manner, improving efficiency.

•This stream-based approach allows for aggressive data prefetching, reducing the impact of memory latency.

•The PIU's memory hierarchy, including scratchpads and register banks, is co-optimized to store and access data during computations 

efficiently/parallely.

•By carefully managing the flow of data through the memory hierarchy, the PIU minimizes stalls and maximizes the utilization of compute resources.

b) Precision-scalable posit arithmetic:

•The PIU employs a posit arithmetic system, specifically the unum III representation, a recently proposed format.

•Posit arithmetic allows for dynamic adjustment of the length of the regime and fraction fields based on the value being encoded.

•This dynamic adjustment enables a trade-off between fraction bits (accuracy) and regime bits (range) during runtime.

•The PIU further customizes the standard posit representation by using more exponent bits, prioritizing increased range over accuracy around the value 1.

•This customization is particularly beneficial for tasks like probabilistic inference, where encountered probabilities can be very small.

•The precision-scalable posit unit in the PIU performs operations in different precisions (e.g., 1×32b, 2×16b, or 4×8b), enabling batch inference for lower 

precisions without sacrificing accuracy.



Probabilistic Inference Unit (PIU) 

c) Aligned compiler optimizations to accelerate exact inference workloads:

•The PIU incorporates compiler optimizations specifically designed to accelerate exact inference workloads in probabilistic models.

•The compiler analyzes the structure of the Sum-Product Networks (SPNs) and decomposes them into layers of disjoint subgraphs.

•By decomposing the SPNs in this way, the compiler ensures no edges between subgraphs within a layer, allowing for parallel execution on different 

compute units (CUs).

•Synchronization points, including special global barrier instructions, are inserted by the compiler to enable data sharing between CUs after each layer of 

subgraphs.

•Load-compute and compute-store dependencies are handled using FIFO-based data transfers, while load-after-store dependencies are managed 

through compiler-inserted local barrier instructions.

•The compiler optimizations enable efficient data flow, minimize dependencies, and exploit the parallelism of the SPN structure, resulting in accelerated 

exact inference workloads.

Peak energy-efficiency: The PIU demonstrates a peak energy-efficiency of 248GOPS/W (Giga Operations Per Second per Watt) at a voltage of 

0.6V, frequency of 113MHz, and precision of 8b. This showcases the energy-efficient nature of the PIU, allowing for efficient execution of probabilistic 

computations while minimizing power consumption.

Outperforms simulated ASIC, FPGA, desktop and embedded GPUs, and CPUs in all familiar PC benchmarks.



Probabilistic Inference Unit (PIU) 



Assignment questions

1. Briefly explain how an arithmetic circuit/ Probabilistic circuit is converted to a pipelined hardware circuit – (ref : section 3.4 

in Problp [11] ).

2. What are the three solutions/ideas discussed in the Probabilistic Inference Unit (PIU).
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Thank you for your attention. 



Custom PEs 

& memory

PC accelerators – Benchmarks
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Custom Application-Specific Integrated Circuit
• DPU [18]: tree-shaped PEs, custom memory and 

scheduler ➔ 10x Eff. compared to best FPGA

• DPUv2 [19]: Advanced scheduler for processing 

FPGA
• Sommer ICCD [14]: automatic HW generation 

with pipeline float operators (double)

• Sommer FCCM [15]: Adding customized 

arithmetic formats (Float, Posit, Log) ➔ 10x Eff.

• Kruppe [16]: Adding more advanced 

scheduling for processing the PC

• Choi [17]: processor architecture with PEs to 

handle larger PCs (1-3 GOPS/query with HLS)

CPU,GPU
• SPNC [13]: customized compilation flow 

based on MLIR (CPU and GPU) ➔ up to 800x 

acceleration compared to regular CPU

FCCM 
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