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Today’s learning outcomes

● Derive minimal models for magnetism
● Identify the quantum excitations of ordered magnets
● Identify the quantum excitations of quantum spin-

liquids
● Identify the fundamental physics of Kondo lattice 

models



  

Today’s materials
Ferromagnet & antiferromagnets Quantum spin-liquids



  

Today’s materials
Ferromagnet & antiferromagnets Quantum spin-liquids

HerbertsmithiteIron



  

Today’s quasiparticles
Magnons Spinons

S=1
No charge

S=1/2
No charge



  

A reminder from previous sessions
Electronic interactions are responsible for symmetry breaking 

Broken 
time-reversal symmetry

Broken
gauge symmetry

Broken
crystal symmetry

Classical magnets Charge density wave Superconductors



  

Correlations and mean field

Magnets SuperconductorsCharge density waves

Many quantum states can be approximately described by mean field theories



  

Interactions and mean field

Free Hamiltonian Interactions

What are these interactions coming from?
● Electrostatic (repulsive) interactions
● Mediated by other quasiparticles (phonons, magnons, plasmons,...)

The net effective interaction can be attractive or repulsive
Magnetism is promoted by repulsive interactions



  

A simple interacting Hamiltonian

Free Hamiltonian Interactions 
(Hubbard term)

What is the ground state of this Hamiltonian?
MagnetismSuperconductivity



  

The mean-field approximation

Four fermions
(not exactly solvable)

Two fermions
(exactly solvable)

For 

Mean field: Approximate four fermions by two fermions times expectation values

Magnetic order

i.e. repulsive interactions



  

The mean-field approximation

Non-collinear magnetic order

The non-collinear mean-field Hamiltonian



  

A Hamiltonian for a
weakly correlated magnet

Free Hamiltonian Exchange term

Her we assume that interactions are weak (in comparison with the kinetic energy)

What if interactions are much stronger than the kinetic energy?



  

Solving the interacting model
at the mean-field level in a 1D chain

We will take the interacting model and solve it at the mean field level

Interaction-induced splitting
Filling 0.2 (full would be 1)



  

Solving the interacting model
at the mean-field level in a 1D chain

Let us do again a 1D, but now with 2 sites per unit cell and at half filling



  

Competing solutions
for a magnetic state

Let us now consider two selfconsistent solutions for the interacting model

Only once of them is the true ground state, but which one it is?



  

Competing solutions
for a magnetic state

Let us now compute the energy difference between the two configurations

For strong interactions, the AF configuration always has lower energy



  

The critical interaction
for magnetic ordering

Lets take the Hamiltonian

Do we have magnetism for any value of U?

In general, in the weak coupling limit magnetism appears when

Density of statesRepulsive interaction



  

The critical interaction
for magnetic ordering

Magnetic instabilities occur once interactions are strong enough

For interactions below a threshold, no magnetic order occurs



  

Sym

The strongly localized limit 
and the Heisenberg model



  

From a weak magnet to
the strongly localized limit

For large interaction strength, the system develops a local quantized magnetic moment



  

The strongly localized limit
Let us start with a Hubbard model dimer

Now in the limit

The full Hilbert space at half filling is

Levels



  

The strongly localized limit
Let us start with a Hubbard model dimer

The energies in the strongly localized limit are



  

The strongly localized limit
Let us start with a Hubbard model dimer

The low energy manifold is

Just one electron in each site for 

Local S=1/2 at each site



  

The strongly localized limit

Effective Heisenberg model in the localized limit

We can compute J using second order perturbation theory

“pristine” Hamiltonian
(Hubbard)

“perturbation” Hamiltonian
(hopping)



  

The strongly localized limit

Effective Heisenberg model in the localized limit

We can compute J using second order perturbation theory

Ground state Virtual state



  

The Heisenberg model
For a generic Hamiltonian in a generic lattice

In the strongly correlated (half-filled) limit we obtain a Heisenberg model



  

The Heisenberg model
Non-Hubbard (multiorbital) models also yield effective Heisenberg models 

In those generic cases, the exchange couplings can be positive or negative

Antiferromagnetic coupling Ferromagnetic coupling

Spin-orbit coupling introduces anisotropic couplings



  

The Heisenberg model

Antiferromagnetic coupling Ferromagnetic coupling

Classical ground states



  

Antiferromagnetism driven by 
superexchange

In the honeycomb lattice

In bipartite lattices, the magnetization is collinear

In the square lattice



  

Antiferromagnetism driven by 
superexchange

In the triangular lattice

Geometric frustration promotes non-collinear order at the mean-field level

In the Kagome lattice



  

The origin of ferromagnetic coupling
Exchange interactions can be ferromagnetic if mediated by an intermediate site

Low energy manifold Virtual state (among others)

The sign of the coupling depends on the filling of the d-shell and the angle
Goodenough-Kanamori rules



  

Non-isotropic exchange coupling
In the presence of spin-orbit coupling, new terms can appear in the Hamiltonian

Promotes
non-collinear order

Antisymmetric exchange Anisotropic exchange

Promotes
easy axis/plane

Kitaev interaction

Promotes
frustration



  

Break

10-15 min break

(optional) to discuss during the break

Which type of magnetic order fulfills



  

Sym
Magnons



  

Excitations in a ferromagnet

Qualitatively, magnons are the fluctuations of the order parameter



  

Excitations in the Heisenberg model
The Heisenberg model is a full-fledged many-body problem

How do we compute its many-body excitations?

Algebraic commutation relations



  

The ferromagnetic Heisenberg model

In the case of a ferromagnetic Heisenberg model, we know the ground state

But how do we compute the excitations?



  

The Holstein–Primakoff transformation
Replace the spin Hamiltonian by a bosonic Hamiltonian

Make the replacement and decouple with mean-field assuming

MagnonSpins



  

Magnons in a nutshell

Increase the spin Destroy a magnon

Decrease the spin Create a magnon

Net magnetization Maximal minus the magnons

Magnons are S=1 excitations that exist over the symmetry broken state



  

Magnon dispersions

Gapless magnons Gapped magnons Dirac magnons



  

Magnons in the presence
and absence of anisotropy

Without anisotropy With anisotropy

Anisotropy in the spin model generates a magnon gap



  

The role of magnons in 2D magnets

Temperature

Correction from magnon population

In the absence of a magnon gap, the correction to the magnetization is infinite

Magnons renormalize the total magnetization



  

Topological magnons
A magnon dispersion can have topological gaps at high energies, leading to topological modes



  

Sym

Quantum spin liquids and 
spinons



  

The Ising dimer
What is the ground state of this Hamiltonian

The Hamiltonian has two ground states (related by time-reversal symmetry)

Each ground state breaks time-reversal symmetry

A symmetry broken antiferromagnet is a macroscopic version of this



  

The quantum Heisenberg dimer
What is the ground state of this quantum Hamiltonian?

The ground state is unique, and does not break time-reversal

The state is maximally entangled

Can we have a macroscopic version of this ground state?



  

Towards quantum-spin liquids

Ferromagnetism Antiferromagnetism Frustrated magnetism

To get a quantum-spin liquid, we should look for frustrated magnetism



  

Frustrated lattices
KagomeTriangular



  

Quasiparticles in a
quantum spin-liquid

The approximation used for magnons breaks down

Quantum spin liquids require

We need a new approximation for the quantum excitations

Let us assume that a certain Hamiltonian realizes a QSL



  

The parton transformation
Transform spin operators to auxiliary fermions (Abrikosov fermions)

The fermions f (spinons) have S=1/2 but no charge

This transformation artificially enlarges the Hilbert space, thus we have to put the constraint

This transformation allow to turn a spin Hamiltonian into a fermionic Hamiltonian



  

The spinon Hamiltonian

We can insert the auxiliary fermions

And perform a mean-field in the auxiliary fermions (spinons)

Enforcing time-reversal symmetry

The exitations of the QSL are described by a single particle spinon Hamiltonian



  

Spinon dispersions

Gapless spinons Gapped spinons Dirac spinons



  

Sym
The Kondo lattice model



  

The Kondo problem
Conduction electrons

Kondo coupling

We now take a quantum spin S=1/2



  

The Kondo lattice problem
The Kondo lattice problem

Conduction electrons Kondo coupling

Kondo sites



  

Building an artificial heavy fermion state

Lattice of Kondo impurities Dispersive electron gas

Both ingredients coupled through Kondo coupling



  

Building an artificial heavy fermion state

Kondo-lattice modelConduction electrons form
Kondo singlets with the impurities

Associated with Kondo lattice physics:
- Colossal mass enhancement of electrons
- Quantum criticality
- Unconventional (topological) superconductivity



  

Solving the Kondo lattice problem

Replace the spin sites by auxiliary fermions

This makes the effective Hamiltonian an “interacting” fermionic Hamiltonian



  

Solving the Kondo lattice problem
Now we decouple the fermions with a mean-field approximation

Obtaining a quadratic Hamiltonian

Conduction band dispersion Kondo hybridization



  

Electronic structure of
the Kondo lattice problem

Auxiliary Kondo fermions

Conduction
electrons



  

Electronic structure of
the Kondo lattice problem

The Kondo coupling opens up a gap in the electronic structure



  

Dependence on the Kondo coupling
The heavy-fermion gap becomes bigger as the Kondo coupling increases



  

Take home

● Magnetism arises from repulsive interactions
● The fundamental excitations of magnets are magnons and 

have S=1
● Frustrated magnetic models can display quantum spin-

liquid behavior
● The fundamental excitations of QSL have S=1/2
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