A!

Aalto University School of Electrical Engineering

Lecture 9: Grid Converters: Power Angle Equation, LCL Filter ELEC-E8402 Control of Electric Drives and Power Converters

Marko Hinkkanen

Spring 2023

Learning Outcomes

After this lecture you will be able to:

- Derive the power angle equation and draw the corresponding vector diagrams
- Explain why a filter is needed between the converter and the grid
- Explain the most important characteristics of an LCL filter and compare it to an L filter

Some experimental examples are also included, but their details are not covered

PWM Voltage

LCL Filter

Inductor Size

Space-Vector Equivalent Circuit

In synchronous coordinates:
$$L \frac{\mathrm{d} \boldsymbol{i}_{\mathrm{c}}}{\mathrm{d} t} = \boldsymbol{u}_{\mathrm{c}} - \boldsymbol{u}_{\mathrm{g}} - \mathrm{j} \omega_{\mathrm{g}} L \boldsymbol{i}_{\mathrm{c}}$$

The inductance L is the total inductance of the filter and the grid. It is also to be noted that the converter voltage u_c contains PWM harmonics.

Power fed to the grid

$$p_{g} = \frac{3}{2} \operatorname{Re} \left\{ \boldsymbol{u}_{g} \boldsymbol{i}_{c}^{*} \right\}$$
$$= \frac{3}{2} |\boldsymbol{u}_{g}| |\boldsymbol{i}_{c}| \cos \varphi$$

where φ is the angle between \boldsymbol{u}_{g} and \boldsymbol{i}_{c}

 Consider the steady state and the fundamental component

$$oldsymbol{i}_{
m c} = rac{oldsymbol{u}_{
m c} - oldsymbol{u}_{
m g}}{{
m j}\omega_{
m g}L}$$

 Substituting *i*_c to the power expression yields the power angle equation

If per-unit values are used, the factor 3/2 in the power equation and the factor $3n_{\rm D}/2$ in the torque equation disappear.

Examples: Strong Grid and Very Weak Grid

The converter current $|\mathbf{i}_c| = 1$ p.u., the grid voltage $|\mathbf{u}_g| = 1$ p.u., and the grid frequency $\omega_g = 1$ p.u. are assumed in all three example cases.

Observations

- Capability to feed active power to the grid reduces with the increasing grid inductance for the given voltage and current capacity
 - Case 1: $|u_c| \approx 1.005$ p.u.
 - Case 2: $|u_c| = \sqrt{2}$ p.u. \approx 1.41 p.u., need for higher u_{dc} and voltage rating
 - Case 3: $|u_c| =$ 1 p.u. but the power $p_g = \sqrt{3}/2$ p.u. \approx 0.87 p.u. is limited
- Maximum available converter voltage is $u_{c,max} = u_{dc}/\sqrt{3}$
- ► Short-circuit ratio (SCR) is the inverse of *L* in per units
 - ▶ Grid is considered weak if SCR < 3 (corresponding to *L* > 0.33 p.u.)
- Stability of the control system may also limit the maximum power in weak grids
- These considerations are approximately valid also for an LCL filter, which behaves as an L filter at lower frequencies

PWM Voltage

LCL Filter

Inductor Size

PWM Voltage: Symmetrical Suboscillation Method (SVPWM)

PWM Voltage Spectrum

Spectrum depends on

- ► Modulation method (SVPWM, DPWM, ...)
- Operating point (DC-bus voltage, AC voltage)
- Ratio between the switching frequency and the fundamental frequency
- ► Parasitic issues (inverter dead time, clock resolution, ...)

Spectrum can be determined, e.g., by means of the discrete Fourier transform

Fundamental frequency 50 Hz, switching frequency 5 kHz

PWM Voltage

LCL Filter

Inductor Size

LCL Filters are Commonly Used in Grid Converters

- Current controller has to damp the LCL resonance (unless damping resistors in the filter are used)
- Converter current or grid current is measured

LCL Filter: Space-Vector Model

- Model is presented in stator coordinates
- Superscript s is dropped to simplify notation
- Model can be easily transformed to synchronous coordinates

$$rac{\mathrm{d}}{\mathrm{d}t} \leftarrow rac{\mathrm{d}}{\mathrm{d}t} + \mathrm{j}\omega_{\mathrm{g}}$$
 in the time domain
 $s \leftarrow s + \mathrm{j}\omega_{\mathrm{g}}$ in the Laplace domain

Parasitic losses are omitted

$$\begin{split} L_{\rm fc} \frac{\mathrm{d} \boldsymbol{i}_{\rm c}}{\mathrm{d} t} &= \boldsymbol{u}_{\rm c} - \boldsymbol{u}_{\rm f} \\ C_{\rm f} \frac{\mathrm{d} \boldsymbol{u}_{\rm f}}{\mathrm{d} t} &= \boldsymbol{i}_{\rm c} - \boldsymbol{i}_{\rm g} \\ L_{\rm fg} \frac{\mathrm{d} \boldsymbol{i}_{\rm g}}{\mathrm{d} t} &= \boldsymbol{u}_{\rm f} - \boldsymbol{u}_{\rm g} \end{split}$$

► State-space form

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\begin{bmatrix} \boldsymbol{i}_{\mathrm{c}} \\ \boldsymbol{u}_{\mathrm{f}} \\ \boldsymbol{i}_{\mathrm{g}} \end{bmatrix}}_{\boldsymbol{x}} = \underbrace{\begin{bmatrix} 0 & -1/L_{\mathrm{fc}} & 0 \\ 1/C_{\mathrm{f}} & 0 & -1/C_{\mathrm{f}} \\ 0 & 1/L_{\mathrm{fg}} & 0 \end{bmatrix}}_{\boldsymbol{A}} \begin{bmatrix} \boldsymbol{i}_{\mathrm{c}} \\ \boldsymbol{u}_{\mathrm{f}} \\ \boldsymbol{i}_{\mathrm{g}} \end{bmatrix} + \underbrace{\begin{bmatrix} 1/L_{\mathrm{fc}} \\ 0 \\ 0 \end{bmatrix}}_{\boldsymbol{B}_{\mathrm{c}}} \boldsymbol{u}_{\mathrm{c}} + \underbrace{\begin{bmatrix} 0 \\ 0 \\ -1/L_{\mathrm{fg}} \end{bmatrix}}_{\boldsymbol{B}_{\mathrm{g}}} \boldsymbol{u}_{\mathrm{g}}$$
$$\boldsymbol{i}_{\mathrm{c}} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}}_{C_{\mathrm{c}}} \boldsymbol{x} \quad \boldsymbol{i}_{\mathrm{g}} = \underbrace{\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}}_{C_{\mathrm{g}}} \boldsymbol{x}$$

► Transfer functions can be expressed using system matrices, for example

$$\frac{i_{\rm c}(s)}{u_{\rm c}(s)} = Y_{\rm cc}(s) = C_{\rm c}(sI - A)^{-1}B_{\rm c} \qquad \frac{i_{\rm g}(s)}{u_{\rm c}(s)} = Y_{\rm gc}(s) = C_{\rm g}(sI - A)^{-1}B_{\rm c}$$

Transfer Function from $m{u}_{ m c}$ to $m{i}_{ m c}$

$$\frac{\mathbf{i}_{\rm c}(s)}{\mathbf{u}_{\rm c}(s)} = Y_{\rm cc}(s) = \frac{1}{sL_{\rm fc}} \frac{s^2 + \omega_{\rm z}^2}{s^2 + \omega_{\rm p}^2}$$

 Antiresonance frequency and resonance frequency

$$\omega_{\rm z} = \sqrt{\frac{1}{L_{\rm fg}C_{\rm f}}} \qquad \omega_{\rm p} = \sqrt{\frac{L_{\rm fc} + L_{\rm fg}}{L_{\rm fc}L_{\rm fg}C_{\rm f}}}$$

Transfer Function from $oldsymbol{u}_{ m c}$ to $oldsymbol{i}_{ m g}$

$$\frac{\mathbf{\dot{u}_{g}}(s)}{\mathbf{u}_{c}(s)} = Y_{gc}(s) = \frac{1}{sL_{fc}}\frac{\omega_{z}^{2}}{s^{2} + \omega_{p}^{2}}$$

Parameters in these examples

 $L_{\rm fc} = 3 \text{ mH}$ $C_{\rm f} = 10 \,\mu\text{F}$ $L_{\rm fg} = 2 \text{ mH}$

Resonance frequencies

$$\begin{split} f_{\rm z} &= \omega_{\rm z}/(2\pi) = 1.13 \; {\rm kHz} \\ f_{\rm p} &= \omega_{\rm p}/(2\pi) = 1.45 \; {\rm kHz} \end{split}$$

- ▶ Red dashed line: inductor $L_{\rm fc} + L_{\rm fg}$
- Blue dotted line: $10(L_{\rm fc} + L_{\rm fg})$

PWM Voltage

LCL Filter

Inductor Size

LCL Filter vs. L Filter

- Harmonics of the grid current at the PCC should meet the grid code or standard requirements (e.g. THD < 5%)
- Compare $|Y_{gc}|$ of an LCL filter at 5 kHz to the inductor $10(L_{fc} + L_{fg})$
- For the same attenuation, the total inductance of the LCL filter can be made much smaller than the pure inductance of the L filter
- ► How the inductance value is related to the physical size of the inductor?^{1,2}

¹Kazimierczuk, *High-frequency magnetic components*. Wiley, 2013.

²Koppinen, Rahman, and Hinkkanen, "Effects of the switching frequency of a grid converter on the LCL filter design," in *Proc. IET PEMD*, 2016.

Measure for an Inductor Size: Area Product

Stored energy of the inductor

$$W_L = \frac{1}{2}Li^2 = \frac{1}{2}\psi i = \frac{1}{2}(NBA_c)(K_u JA_w/N)$$

- B is the peak value of the core flux density [T] (depends on the core material)
- J is the peak value of the current density [A/m²] (depends on the cooling)
- $K_{\rm u}$ is the window utilization factor
- ► For given maximum current *i*, the inductance is proportional to the area product A_wA_c [m⁴]

$$L = \frac{K_{\rm u}JB}{i^2} A_{\rm w} A_{\rm c}$$

Required L depends on the switching frequency

PWM Voltage

LCL Filter

Inductor Size

- 12.5-kVA test converter
- Switching frequency $f_{sw} = 4 \text{ kHz}$
- $\blacktriangleright\,$ Filter resonance frequency: $f_{\rm p}=1.5~{\rm kHz}$

- Low ratio $f_{\rm sw}/f_{\rm p}$ makes control more difficult
- Digital delays can be effectively taken into account in the discrete-time design
- Two state-feedback controllers (same feedback signals and design specs): continuous-time design with the Tustin method vs. direct discrete-time design³

³Kukkola, Hinkkanen, and Zenger, "Observer-based state-space current controller for a grid converter equipped with an LCL filter: Analytical method for direct discrete-time design," *IEEE Trans. Ind. Appl.*, 2015.