

Yield. Reliability

Victor Ovchinnikov

Chapter 36

Previous material

- CMOS
- MEMS

Content

- Yield
- Failure mechanisms
- Reliability

Chip yield

Yield calculation

It is a quotient of good outcomes to total (wafers, chips)

$$Y = \frac{N_{good}}{N_{total}}$$

If a process consists of several steps

$$Y = \prod_{i} y_i$$

where *i* notes yield of individual step.

In case of systematic and random components

$$Y = Y_{sys} * Y_{rand},$$

global disturbance (wrong etching depth) Y_{sys} and spot defects (particles) Y_{rand}

Effect of process step number

A Poisson yield model

One parameter (D*A) distribution. D*A –average number of faults per chip

The random-yield Y_{rand}

$$Y = e^{-DA}$$

D – defect density, A – chip area

General yield model (negative binomial)

All models present random part of yield Y_{rand} !

Yield and clustering coefficien β

Defect densities

Optimum chip size

A

Yield loss contributors and yield ramp

Yield ramping - MEMS

A.D. Romig, Jr et al. / Acta Materialia 51 (2003) 5837-5866

Yield stability

Yield must be stable, because it is a yardstick for process development.

If yield is not stable, random yield improvement can be interpreted being due to engineering action Y_{sys} , even though it might be just random Y_{rand} .

Technology nodes and market

Why do we talk about yield?

- High yield leads to high profit
- Yield value tell us about the process quality
- Yield variations reflect process changing:
 - materials
 - environment
 - tools
 - operator skill
 - device desing

IC defects I

Defect fishbone diagram

Metallization damage

Al Wiring Coverage Disconnection

Damage on Wire Due to Ultrasonic Fatigue

Electromigration concept

Thermal acceleration loop of electromigration

Electromigration result

Al-Cu(2-4%) prevents electromigration

Gate oxide breakdown

With scaling, gate oxide reliability becomes an issue:

- electric fields within the gate oxide grow
- more and more transistors on chip

Breakdown is a conduction path from the anode to the cathode through the gate oxide

Traps allow for creation of conduction path:

- traps are defects in oxide that can trap charges

Oxide defects

Areas with breakdown risk

Traps within gate oxide

Traps start to form in the Gate Oxide –originally –Non-overlapping –Do not conduct

Soft breakdown

As more and more traps are created

- -traps start to overlap
- -conduction path is created

Once this conduction path is created we have Soft Breakdown (SBD) or time-dependent oxide breakdown (TDDB)

Thermal damage

Conduction leads to heat Heat leads to thermal damage Thermal Damage leads to Traps More Traps leads to more conduction

Hard breakdown

Silicon in the breakdown spots melts Oxygen is released Silicon Filament is formed from Gate to Substrate (Hard Breakdown)

Reliability

Reliability is the ability of a system to perform its functions in routine circumstances. It is characterized by Mean Time To Failure (MTTF)

Reliability depends on:

- Chip fabrication process
- Assembly
- Environmental conditions:
 - Voltage, current density
 - Temperature, humidity, gas, dust
 - Contamination
 - Mechanical stress
 - Vibration, shock
 - Radiation, intensity of electrical and magnetic fields

Weibull distribution of failures

Weibull plot for gate oxide

 $\ln(-\ln(1-p))$, where p=(i-0.3)/(n+0.4), *i* is the rank of the observation

if the data follow a Weibull distribution, the points will be linear

Aalto Nanofab, 2023

Yield and Reliability

- Yield chip fabrication period
 Affects chip cost
- Reliability chip application period
 Affects chip lifespan

Conclusions

- Yield (defect loss) is inherent feature of the microfabrication
- Yield and reliability can be statistically analyzed and monitored
- Yield and reliability depend both on design and on processing