
CS-E4890: Deep Learning
Q&A Session Assignment 8 - Diffusion
Nicola Dainese, 5/05/2023

AALTO UNIVERSITY



Denoising Diffusion Probabilistic Models (DDPM)

In this assignment:
● We follow the paper Denoising Diffusion Probabilistic Models (DDPM) from Ho et al. 2020.
● We implement:

○ the forward and reverse diffusion processes with Gaussian noise,
○ a U-net based architecture as a denoising model,
○ a training loop for MNIST dataset,
○ an in-painting function, that completes an image of a digit given only a part of it.



Why diffusion models?

We evaluate image generative models along three axes: 

1. Image quality: how good do the images look?
○ depends on the generative process, training 

objective and neural architecture.
2. Diversity: how much variety of samples we get?

○ depends on the training objective; likelihood 
based models (e.g. VAEs) are the best in this, 
while GANs have problems.

3. Generation speed: how fast is to generate an image?
○ how many times do we need to call the model to 

generate an image? VAEs and GANs both 
require a single call, so they’re quite fast.

Diffusion:
multiple network iterations 

during sampling
+

likelihood-based method
=

good quality
good diversity

slow generation



What are diffusion models?

forward process: 
add Gaussian noise (easy)

reverse process: 
remove Gaussian noise (dark magic?)

Class of latent variable models trained to denoise corrupted data by 
reversing the corruption process.

Corruption scheme, a.k.a. forward process, is a fixed Markov chain 
that gradually adds Gaussian noise to the data. 

training data 
distribution

learned 
distribution

Gaussian noise



Why diffusion works?

We want to learn how to approximate q(x0 ), but we know 
only how to sample from it.

Therefore we need to learn an approximation to q(xt-1|xt ), 
so that we can apply it for all t=T,...,1 starting from 
Gaussian noise and get an approximation of q(x0 ).

T times

Sampling Gaussian noise 
+ 

T steps of denoising 
=

Generative DDPM model 

Assume Gaussian distribution of 

Note that if we condition on x0 we have an exact 
expression* for the expected value

Learn a marginalization of the expected denoised 
value by training a denoising model

*see Eq. 7 of the DDPM paper



Why diffusion works? A simple example

Let’s consider a 1D toy example

Dataset consisting of two points:

{xA=-0.5, xB=+0.5} 

with equal probability of being 
sampled.



Why diffusion works? A simple example (pt. 2)

The forward process reduces the signal and 
adds noise to the data step-by-step:

If the noise is completely random, what is 
there to learn? 

xt carries information about all possible xt-1 
that can lead to it and the respective transition 
probabilities.

For instance in the example xt
(A) is much 

more likely to come from xt-1
(A) then from xt-1

(B) 
and the denoising model will learn that 
through training. Illustration of the forward (solid lines) and reverse (dashed 

lines) diffusion process in the case of two points.



How diffusion works?

Simplest form
1. Sample x0 and t,
2. Obtain xt through the forward process,
3. Compute the expected value of xt-1 given xt and x0 

(analytical formula),
4. Learn to predict that value given only xt and t.

Reparametrization trick
Make explicit the noise ε that from x0 brings us to xt .
Analytic formula for xt given x0 and ε :

Plug this into the formula above, do some math and it turns 
out that it’s equivalent to train the model to predict the noise ε 
that produces xt:



How diffusion works?

Final simplification

from

to

The weighting term (see on the right) gives more 
weight to terms with small t.
Those terms, which have relatively little noise, are 
quite easy to denoise, thus dropping the weight gives 
dramatic improvements (last hop on the table).



Practical tips for the assignment

Check carefully the timestep convention, t takes values in [0,num_timesteps-1] in the assignment, while in 
Algorithm 1 and 2 from the paper t takes values in [1, num_timesteps].

Pay attention and have patience in implementing the U-Net architecture; in particular the skip connections 
are concatenated and not added to the signal. This also affects the amount of input channels of the decoder 
residual blocks.

During training, the same noise ε is used to get xt from Diffusion.forward and as target for the MSE loss.

Training on GPU should take roughly 20 minutes for 20 epochs.

The in-painting part is a bit tricky, but notice that you can do the usual denoising step and then change the 
known part with a more accurate (but still noisy) estimate of xt-1 given xt and x0.

Good luck!


