Practical Quantum Computing

Lecture 04
 Teleportation, Superdense Coding

Measurement Rule

If we measure a quantum system whose $|v\rangle$ wave function is in the basis $\left|w_{i}\right\rangle$, then the probability of getting the outcome corresponding to $\left|w_{i}\right\rangle$ is given by

$$
\operatorname{Pr}\left(\left|w_{i}\right\rangle\right)=\left|\left\langle w_{i} \mid v\right\rangle\right|^{2}=\left\langle v \mid w_{i}\right\rangle\left\langle w_{i} \mid v\right\rangle=\langle v| P_{w_{i}}|v\rangle
$$

where

$$
P_{w_{i}}=\left|w_{i}\right\rangle\left\langle w_{i}\right|
$$

The new wave function of the system after getting the measurement outcome corresponding to $\left|w_{i}\right\rangle$ is given by

$$
\left|v^{\prime}\right\rangle=\frac{P_{w_{i}}|v\rangle}{\sqrt{\operatorname{Pr}\left(\left|w_{i}\right\rangle\right)}}
$$

Measuring One of Two Qubits

Suppose we measure the first of two qubits in the computational basis. Then we can form the two projectors:

$$
\begin{aligned}
& P_{0} \otimes I=|0\rangle\langle 0| \otimes I \\
& P_{1} \otimes I=|1\rangle\langle 1| \otimes I
\end{aligned} \quad I=|0\rangle\langle 0|+|1\rangle\langle 1|
$$

If the two qubit wave function is $|v\rangle$ then the probabilities of these two outcomes are

$$
\begin{aligned}
& \operatorname{Pr}(0)=\langle v| P_{0} \otimes I|v\rangle \\
& \operatorname{Pr}(1)=\langle v| P_{1} \otimes I|v\rangle
\end{aligned}
$$

And the new state of the system is given by either

$$
\left|v^{\prime}\right\rangle=\frac{P_{0} \otimes I|v\rangle}{\sqrt{\operatorname{Pr}(0)}}
$$

$$
\left|v^{\prime}\right\rangle=\frac{P_{1} \otimes I|v\rangle}{\sqrt{\operatorname{Pr}(1)}}
$$

Instantaneous Communication?

Suppose two distant parties each have a qubit and their joint quantum wave function is

$$
|v\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

If one party now measures its qubit, then...

$$
\begin{array}{lll}
P_{\mathrm{O}} \otimes I=|\mathrm{O}\rangle\langle\mathrm{O}| \otimes I & \operatorname{Pr}(\mathrm{O})=\frac{1}{2} & \left|v^{\prime}\right\rangle=|\mathrm{O}\rangle \otimes|\mathrm{O}\rangle \\
P_{1} \otimes I=|1\rangle\langle 1| \otimes I & \operatorname{Pr}(1)=\frac{1}{2} & \left|v^{\prime}\right\rangle=|1\rangle \otimes|1\rangle
\end{array}
$$

The other parties qubit is now either the $|0\rangle$ or $|1\rangle$
Instantaneous communication? NO! These two results happen with probabilities.

Quantum Teleportation

Alice wants to send her qubit to Bob.
She does not know the wave function of her qubit.
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
Can Alice send her qubit to Bob using classical bits?
Since she doesn't know $|\psi\rangle$ and measurements on her state do not reveal $|\psi\rangle$, this task appears impossible.

Quantum Teleportation

Deriving Quantum Teleportation

Our path: We are going to "derive" teleportation

Only concerned with from Alice to Bob transfer

Deriving Quantum Teleportation

Need some way to get entangled states

new equivalent circuit:

Deriving Quantum Teleportation

How to generate an entangled state:

Deriving Quantum Teleportation

Deriving Quantum Teleportation

Deriving Quantum Teleportation

Measurements Through Control

Measurement in the computational basis commutes with a control on a controlled unitary.

$$
\begin{aligned}
& \left(P_{0} \otimes I\right) C_{U}=C_{U}\left(P_{0} \otimes I\right) \\
& (|0\rangle\langle 0| \otimes I)(|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U)=(|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U)(|0\rangle\langle 0| \otimes I) \\
& \left(P_{1} \otimes I\right) C_{U}=C_{U}\left(P_{1} \otimes I\right) \\
& (|1\rangle\langle 1| \otimes I)(|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U)=(|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U)(|1\rangle\langle 1| \otimes I)
\end{aligned}
$$

Deriving Quantum Teleportation

Bell Basis Measurement

Unitary followed by measurement in the computational basis is a measurement in a different basis.

Run circuit backward to find basis:

$$
\begin{aligned}
|00\rangle & \rightarrow \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
|01\rangle & \rightarrow \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
|10\rangle & \rightarrow \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
|11\rangle & \rightarrow \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Teleportation

1. Initially Alice has $|\psi\rangle$ and they each have one of the two qubits of the entangled wave function $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
2. Alice measures $|\psi\rangle$ and her half of the entangled state in the Bell Basis.
3. Alice send the two bits of her outcome to Bob who then performs the appropriate X and Z operations to his qubit.

Teleportation

Alice and Bob each have a qubit

- and the wave function of their two qubits is entangled
- we can't think of Alice's qubit as having a particular wave function
- we have to talk about the "global" two qubit wave function.

Teleportation

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Alice does not know the wave function

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

We have three qubits whose wave function is

Separable, Entangled, 3 Qubits

If we consider $\quad(\alpha|0\rangle+\beta|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle+\frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle$

- qubit 1 as one subsystem
- qubits 2 and 3 as another subsystem
- then the state is separable across this divide

If we consider $\neq\left(a_{00}|00\rangle+a_{01}|01\rangle+a_{10}|10\rangle+a_{11}|11\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right)$

- qubits 1 and 2 as one system
- qubits 3 as one subsystem
- then the state is entangled across this divide.

entangled

Teleportation

$$
\begin{aligned}
|\psi\rangle_{1} \otimes \frac{1}{\sqrt{2}}\left(|00\rangle_{23}\right. & \left.+|11\rangle_{23}\right) \\
& =\frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle+\frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle
\end{aligned}
$$

Teleportation

$$
|\psi\rangle_{1} \otimes \frac{1}{\sqrt{2}}\left(|00\rangle_{23}+|11\rangle_{23}\right)=\frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle+\frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle
$$

Express this state in terms of Bell basis for first two qubits.

Bell basis

$$
\begin{aligned}
& \left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Computational basis

$$
\begin{aligned}
& |00\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi_{+}\right\rangle+\left|\Phi_{-}\right\rangle\right) \\
& |01\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi_{+}\right\rangle+\left|\Psi_{-}\right\rangle\right) \\
& |10\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi_{+}\right\rangle-\left|\Phi_{-}\right\rangle\right) \\
& |01\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi_{+}\right\rangle-\left|\Phi_{-}\right\rangle\right)
\end{aligned}
$$

Teleportation

$$
\begin{aligned}
& \left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

$$
\begin{aligned}
& |00\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi_{+}\right\rangle+\left|\Phi_{-}\right\rangle\right) \\
& |01\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi_{+}\right\rangle+\left|\Psi_{-}\right\rangle\right) \\
& |11\rangle=\frac{1}{\sqrt{2}}\left(\left|\Phi_{+}\right\rangle-\left|\Phi_{-}\right\rangle\right) \\
& |10\rangle=\frac{1}{\sqrt{2}}\left(\left|\Psi_{+}\right\rangle-\left|\Psi_{-}\right\rangle\right)
\end{aligned}
$$

$\left.\frac{\alpha}{\sqrt{2}}[00\rangle+\frac{\alpha}{\sqrt{2}}\lfloor 011\rangle+\frac{\beta}{\sqrt{2}}\langle 10\rangle\right\rangle+\frac{\beta}{\sqrt{2}}|11\rangle$

$$
\begin{aligned}
= & \frac{1}{2}\left(\alpha\left(\left|\Phi_{+}\right\rangle+\left|\Phi_{-}\right\rangle\right) \otimes|0\rangle+\alpha\left(\left|\Psi_{+}\right\rangle+\left|\Psi_{-}\right\rangle\right) \otimes|1\rangle\right. \\
& +\beta\left(\left|\Psi_{+}\right\rangle-\left|\Psi_{-}\right\rangle\right) \otimes|0\rangle+\beta\left(\left|\Phi_{+}\right\rangle-\left|\Phi_{-}\right\rangle\right) \otimes|1\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[\left|\Phi_{+}\right\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)+\left|\Phi_{-}\right\rangle \otimes(\alpha|0\rangle-\beta|1\rangle)\right. \\
& \left.+\left|\Psi_{+}\right\rangle \otimes(\alpha|1\rangle+\beta|0\rangle)+\left|\Psi_{-}\right\rangle \otimes(\alpha|1\rangle-\beta|0\rangle)\right]
\end{aligned}
$$

Teleportation

$$
\begin{aligned}
& \left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left|\Phi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|\Psi_{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

$$
\frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle+\frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle
$$

$$
\begin{aligned}
= & \frac{1}{2}\left(\alpha\left(\left|\Phi_{+}\right\rangle+\left|\Phi_{-}\right\rangle\right) \otimes|0\rangle+\alpha\left(\left|\Psi_{+}\right\rangle+\left|\Psi_{-}\right\rangle\right) \otimes|1\rangle\right. \\
& +\beta\left(\left|\Psi_{+}\right\rangle-\left|\Psi_{-}\right\rangle\right) \otimes|0\rangle+\beta\left(\left|\Phi_{+}\right\rangle-\left|\Phi_{-}\right\rangle\right) \otimes|1\rangle
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\left[\left|\Phi_{+}\right\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)+\left|\Phi_{-}\right\rangle \otimes(\alpha|0\rangle-\beta|1\rangle)\right. \\
& \left.+\left|\Psi_{+}\right\rangle \otimes(\alpha|1\rangle+\beta|0\rangle)+\left|\Psi_{-}\right\rangle \otimes(\alpha|1\rangle-\beta|0\rangle)\right]
\end{aligned}
$$

Teleportation

Teleportation

Teleportation

Given the wave function

$$
\begin{aligned}
& \frac{1}{2}\left[|00\rangle_{12}\left(\alpha|0\rangle_{3}+\beta|1\rangle_{3}\right)+|10\rangle_{12}\left(\alpha|0\rangle_{3}-\beta|1\rangle_{3}\right)\right. \\
& \left.+|01\rangle_{12}\left(\alpha|1\rangle_{3}+\beta|0\rangle_{3}\right)+|11\rangle_{12}\left(\alpha|1\rangle_{3}-\beta|0\rangle_{3}\right)\right]
\end{aligned}
$$

Measure the first two qubits in the computational basis

$$
\begin{array}{ll}
M_{00}=|00\rangle\langle 00| \otimes I & M_{01}=|01\rangle\langle 01| \otimes I \\
M_{10}=|10\rangle\langle 10| \otimes I & M_{11}=|11\rangle\langle 11| \otimes I
\end{array}
$$

Equal $1 / 4$ probability for all four outcomes and new states are:

$$
\begin{array}{ll}
|00\rangle_{12} \otimes\left(\alpha|0\rangle_{3}+\beta|1\rangle_{3}\right) & |10\rangle_{12} \otimes\left(\alpha|0\rangle_{3}-\beta|1\rangle_{3}\right) \\
|01\rangle_{12} \otimes\left(\alpha|1\rangle_{3}+\beta|0\rangle_{3}\right) & |11\rangle_{12} \otimes\left(\alpha|1\rangle_{3}-\beta|0\rangle_{3}\right)
\end{array}
$$

Teleportation

If the bits sent from Alice to Bob are 00, do nothing

$$
|00\rangle_{12} \otimes\left(\alpha|0\rangle_{3}+\beta|1\rangle_{3}\right)=|00\rangle_{12} \otimes|\psi\rangle_{3}
$$

If the bits sent from Alice to Bob are 01, apply a bit flip

$$
\left(I_{4} \otimes X\right)|01\rangle_{12} \otimes\left(\alpha|1\rangle_{3}+\beta|0\rangle_{3}\right)=|01\rangle_{12} \otimes\left(\alpha|0\rangle_{3}+\beta_{1}|1\rangle_{3}\right)
$$

If the bits sent from Alice to Bob are 10, apply a phase flip

$$
\left(I_{4} \otimes Z\right)|10\rangle_{12} \otimes\left(\alpha|0\rangle_{3}-\beta|1\rangle_{3}\right)=|10\rangle \otimes\left(\alpha|0\rangle_{3}+\beta|1\rangle_{3}\right)=|10\rangle_{12} \otimes|\psi\rangle_{3}
$$

If the bits sent from Alice to Bob are 11, apply a bit \& phase flip

$$
\begin{aligned}
\left(I_{4} \otimes Z\right)\left(I_{4} \otimes X\right)|11\rangle_{12} \otimes\left(\alpha|1\rangle_{3}-\beta|0\rangle_{3}\right) & =\left(I_{4} \otimes Z\right)|11\rangle_{12} \otimes\left(\alpha|0\rangle_{3}-\beta|1\rangle_{3}\right) \\
=|11\rangle_{12} \otimes\left(\alpha|0\rangle_{3}+\beta|1\rangle_{3}\right) & =|11\rangle_{12} \otimes|\psi\rangle_{3}
\end{aligned}
$$

Teleportation

Teleportation and Superdense Coding

$$
1 \text { qubit = } 1 \text { ebit }+2 \text { bits }
$$

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

```
Superdense Coding
```

Next we will see that

$$
2 \text { bits }=1 \text { qubit }+1 \text { ebit }
$$

Superdense Coding

Suppose Alice and Bob each have one qubit and the joint two qubit wave function is the entangled state

$$
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Alice wants to send two bits to Bob. Call these bits b_{1} and b_{2}.
Alice applies the following operator to her qubit:
Bob then measures in the Bell basis to determine the two bits.

2 bits $=1$ qubit +1 ebit

Bell Basis

The four Bell states

- can be turned into each other
- using operations on only one of the qubits:

$$
\begin{gathered}
\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
(X \otimes I)\left|\Phi_{+}\right\rangle=(X \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|10\rangle+|01\rangle)=\left|\Psi_{+}\right\rangle \\
(Z \otimes I)\left|\Phi_{+}\right\rangle=(Z \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=\left|\Phi_{-}\right\rangle \\
(Z X \otimes I)\left|\Phi_{+}\right\rangle=(Z X \otimes I) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(-|10\rangle+|01\rangle)=\left|\Psi_{-}\right\rangle
\end{gathered}
$$

Superdense Coding

Initially: $\quad\left|\Phi_{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
Alice applies the following operator to her qubit: $Z^{b_{2}} X^{b_{1}}$

$$
\left(Z^{b_{2}} X^{b_{1}} \otimes I\right)\left|\Phi_{+}\right\rangle
$$

Bob can uniquely:

- determine which of the four states he has
- figure out Alice's two bits!

$$
\begin{array}{lrr}
b_{1}=0, b_{2}=0 & \left|\Phi_{+}\right\rangle \\
b_{1}=0, b_{2}=1 & (Z \otimes I)\left|\Phi_{+}\right\rangle=\left|\Phi_{-}\right\rangle \\
b_{1}=1, b_{2}=0 & (X \otimes I)\left|\Phi_{+}\right\rangle=\left|\Psi_{+}\right\rangle \\
b_{1}=1, b_{2}=1 & (Z X \otimes I)\left|\Phi_{+}\right\rangle=\left|\Psi_{-}\right\rangle
\end{array}
$$

Superdense Coding

Teleportation and Superdense Coding

$$
1 \text { qubit }=1 \text { ebit }+2 \text { bits }
$$

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

$$
2 \text { bits }=1 \text { qubit }+1 \text { ebit }
$$

Superdense coding. We can send two bits of classical information if we share an entangled state and can communicate one qubit of quantum information.

