Practical Quantum Computing

Lecture 04 Teleportation, Superdense Coding

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/

Measurement Rule

If we measure a quantum system whose $|v\rangle$ wave function is in the basis $|w_i\rangle$, then the probability of getting the outcome corresponding to $|w_i\rangle$ is given by

$$Pr(|w_i\rangle) = |\langle w_i|v\rangle|^2 = \langle v|w_i\rangle\langle w_i|v\rangle = \langle v|P_{w_i}|v\rangle$$

where

$$P_{w_i} = |w_i\rangle\langle w_i|$$

The new wave function of the system after getting the measurement outcome corresponding to $|w_i\rangle$ is given by

$$|v'
angle = rac{P_{w_i}|v
angle}{\sqrt{Pr(|w_i
angle)}}$$

Measuring One of Two Qubits

Suppose we measure the first of two qubits in the computational basis. Then we can form the two projectors:

$$P_0 \otimes I = |0\rangle \langle 0| \otimes I P_1 \otimes I = |1\rangle \langle 1| \otimes I$$

$$I = |0\rangle \langle 0| + |1\rangle \langle 1|$$

If the two qubit wave function is $|v\rangle$ then the probabilities of these two outcomes are $Pr(0) = \langle v | P_0 \otimes I | v \rangle$ $Pr(1) = \langle v | P_0 \otimes I | v \rangle$

$$Pr(1) = \langle v | P_1 \otimes I | v$$

And the new state of the system is given by either

$$|v'\rangle = \frac{P_0 \otimes I|v\rangle}{\sqrt{Pr(0)}}$$
 $|v'\rangle = \frac{P_1 \otimes I|v\rangle}{\sqrt{Pr(1)}}$

Instantaneous Communication?

Suppose two distant parties each have a qubit and their joint quantum wave function is 1 1

$$|v\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

If one party now measures its qubit, then...

$$P_0 \otimes I = |0\rangle \langle 0| \otimes I \quad Pr(0) = \frac{1}{2} \quad |v'\rangle = |0\rangle \otimes |0\rangle$$
$$P_1 \otimes I = |1\rangle \langle 1| \otimes I \quad Pr(1) = \frac{1}{2} \quad |v'\rangle = |1\rangle \otimes |1\rangle$$

The other parties qubit is now either the $|0\rangle$ or $|1\rangle$

Instantaneous communication? NO! These two results happen with probabilities.

Quantum Teleportation

Alice wants to send her qubit to Bob.

She does not know the wave function of her qubit.

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Can Alice send her qubit to Bob using classical bits?

Since she doesn't know $|\psi\rangle$ and measurements on her state do not reveal $|\psi\rangle$, this task appears impossible.

Our path: We are going to "derive" teleportation

Only concerned with from Alice to Bob transfer

 $|\phi\rangle$

 $|\psi\rangle$

Need some way to get entangled states

new equivalent circuit:

How to generate an entangled state:

Deriving Quantum Teleportation

Measurements Through Control

Measurement in the computational basis commutes with a control on a controlled unitary.

 $(P_0 \otimes I)C_U = C_U(P_0 \otimes I)$ $(|0\rangle\langle 0|\otimes I)(|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes U) = (|0\rangle\langle 0|\otimes I+|1\rangle\langle 1|\otimes U)(|0\rangle\langle 0|\otimes I)$

 $(P_1 \otimes I)C_U = C_U(P_1 \otimes I)$ (|1\lapha 1|\overline{I})(|0\lapha 0|\overline{I}+|1\lapha 1|\overline{U}) = (|0\lapha 0|\overline{I}+|1\lapha 1|\overline{U})(|1\lapha 1|\overline{I})

Bell Basis Measurement

Unitary followed by measurement in the computational basis is a measurement in a different basis. H = H

Run circuit backward to find basis:

- 1. Initially Alice has $|\psi\rangle$ and they each have one of the two qubits of the entangled wave function $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$
- 2. Alice measures $|\psi\rangle$ and her half of the entangled state in the Bell Basis.
- 3. Alice send the two bits of her outcome to Bob who then performs the appropriate X and Z operations to his qubit.

Alice and Bob each have a qubit

- and the wave function of their two qubits is entangled
- we can't think of Alice's qubit as having a particular wave function
- we have to talk about the "global" two qubit wave function.

First step: Interact and entangle

Second step: Separate (physically)

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) - \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$|0\rangle - \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

 $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Alice does not know the wave function

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

We have three qubits whose wave function is

qubit 1
$$|\psi\rangle \otimes \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 qubit 2 and qubit 3

Separable, Entangled, 3 Qubits

If we consider $(\alpha|0\rangle+\beta|1\rangle)\otimes\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) = \frac{\alpha}{\sqrt{2}}|000\rangle+\frac{\alpha}{\sqrt{2}}|011\rangle+\frac{\beta}{\sqrt{2}}|100\rangle+\frac{\beta}{\sqrt{2}}|111\rangle$

- qubit 1 as one subsystem
- qubits 2 and 3 as another subsystem
- then the state is separable across this divide

If we consider $\neq (a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle) \otimes (b_0|0\rangle + b_1|1\rangle)$

- qubits 1 and 2 as one system
- qubits 3 as one subsystem
- then the state is entangled across this divide.

separable

entangled

$$\begin{aligned} |\psi\rangle_1 \otimes \frac{1}{\sqrt{2}} (|00\rangle_{23} + |11\rangle_{23}) \\ &= \frac{\alpha}{\sqrt{2}} |000\rangle + \frac{\alpha}{\sqrt{2}} |011\rangle + \frac{\beta}{\sqrt{2}} |100\rangle + \frac{\beta}{\sqrt{2}} |111\rangle \end{aligned}$$

$$|\psi\rangle_{1} \otimes \frac{1}{\sqrt{2}} (|00\rangle_{23} + |11\rangle_{23}) = \frac{\alpha}{\sqrt{2}} |000\rangle + \frac{\alpha}{\sqrt{2}} |011\rangle + \frac{\beta}{\sqrt{2}} |100\rangle + \frac{\beta}{\sqrt{2}} |111\rangle$$

Express this state in terms of Bell basis for first two qubits.

$$\begin{split} |\Phi_{+}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Phi_{-}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi_{+}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi_{-}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{split}$$

Bell basis

Computational basis

$$|00\rangle = \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle + |\Phi_{-}\rangle)$$
$$|01\rangle = \frac{1}{\sqrt{2}}(|\Psi_{+}\rangle + |\Psi_{-}\rangle)$$
$$|10\rangle = \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle - |\Phi_{-}\rangle)$$
$$|01\rangle = \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle - |\Phi_{-}\rangle)$$

$$\begin{split} |\Phi_{+}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Phi_{-}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi_{+}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi_{-}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{split} \qquad \begin{aligned} |00\rangle &= \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle + |\Phi_{-}\rangle) \\ |11\rangle &= \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle - |\Phi_{-}\rangle) \\ |10\rangle &= \frac{1}{\sqrt{2}}(|\Psi_{+}\rangle - |\Psi_{-}\rangle) \end{aligned}$$

$$\frac{\alpha}{\sqrt{2}} |00\rangle + \frac{\alpha}{\sqrt{2}} |011\rangle + \frac{\beta}{\sqrt{2}} |10\rangle + \frac{\beta}{\sqrt{2}} |11\rangle \rangle$$

$$= \frac{1}{2} (\alpha(|\Phi_{+}\rangle + |\Phi_{-}\rangle) \otimes |0\rangle + \alpha(|\Psi_{+}\rangle + |\Psi_{-}\rangle) \otimes |1\rangle \\ + \beta(|\Psi_{+}\rangle - |\Psi_{-}\rangle) \otimes |0\rangle + \beta(|\Phi_{+}\rangle - |\Phi_{-}\rangle) \otimes |1\rangle$$

$$= \frac{1}{2} \Big[|\Phi_{+}\rangle \otimes (\alpha|0\rangle + \beta|1\rangle) + |\Phi_{-}\rangle \otimes (\alpha|0\rangle - \beta|1\rangle) \\ + |\Psi_{+}\rangle \otimes (\alpha|1\rangle + \beta|0\rangle) + |\Psi_{-}\rangle \otimes (\alpha|1\rangle - \beta|0\rangle) \Big]$$

$$\begin{split} |\Phi_{+}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \\ |\Phi_{-}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \\ |\Psi_{+}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \\ |\Psi_{-}\rangle &= \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \end{split} \qquad \begin{aligned} |00\rangle &= \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle + |\Phi_{-}\rangle) \\ |01\rangle &= \frac{1}{\sqrt{2}}(|\Psi_{+}\rangle + |\Psi_{-}\rangle) \\ |11\rangle &= \frac{1}{\sqrt{2}}(|\Phi_{+}\rangle - |\Phi_{-}\rangle) \\ |10\rangle &= \frac{1}{\sqrt{2}}(|\Psi_{+}\rangle - |\Psi_{-}\rangle) \end{aligned}$$

$$\frac{\alpha}{\sqrt{2}}|000\rangle + \frac{\alpha}{\sqrt{2}}|011\rangle + \frac{\beta}{\sqrt{2}}|100\rangle + \frac{\beta}{\sqrt{2}}|111\rangle$$

$$= \frac{1}{2} (\alpha(|\Phi_{+}\rangle + |\Phi_{-}\rangle) \otimes |0\rangle + \alpha(|\Psi_{+}\rangle + |\Psi_{-}\rangle) \otimes |1\rangle + \beta(|\Psi_{+}\rangle - |\Psi_{-}\rangle) \otimes |0\rangle + \beta(|\Phi_{+}\rangle - |\Phi_{-}\rangle) \otimes |1\rangle$$

$$= \frac{1}{2} \Big[|\Phi_{+}\rangle \otimes (\alpha|0\rangle + \beta|1\rangle) + |\Phi_{-}\rangle \otimes (\alpha|0\rangle - \beta|1\rangle) \\ + |\Psi_{+}\rangle \otimes (\alpha|1\rangle + \beta|0\rangle) + |\Psi_{-}\rangle \otimes (\alpha|1\rangle - \beta|0\rangle) \Big]$$

Given the wave function

$$\frac{1}{2}[|00\rangle_{12}(\alpha|0\rangle_{3}+\beta|1\rangle_{3})+|10\rangle_{12}(\alpha|0\rangle_{3}-\beta|1\rangle_{3})+|01\rangle_{12}(\alpha|1\rangle_{3}+\beta|0\rangle_{3})+|11\rangle_{12}(\alpha|1\rangle_{3}-\beta|0\rangle_{3})]$$

Measure the first two qubits in the computational basis

$M_{00} = 00\rangle\langle 00 \otimes I$	$M_{01} = 01\rangle\langle 01 \otimes I$
$M_{10} = 10\rangle\langle 10 \otimes I$	$M_{11} = 11\rangle\langle 11 \otimes I$

Equal ¹/₄ probability for all four outcomes and new states are:

 $\begin{aligned} |00\rangle_{12} \otimes (\alpha|0\rangle_{3} + \beta|1\rangle_{3}) & |10\rangle_{12} \otimes (\alpha|0\rangle_{3} - \beta|1\rangle_{3}) \\ |01\rangle_{12} \otimes (\alpha|1\rangle_{3} + \beta|0\rangle_{3}) & |11\rangle_{12} \otimes (\alpha|1\rangle_{3} - \beta|0\rangle_{3}) \end{aligned}$

If the bits sent from Alice to Bob are 00, do **nothing** $|00\rangle_{12} \otimes (\alpha|0\rangle_3 + \beta|1\rangle_3) = |00\rangle_{12} \otimes |\psi\rangle_3$

If the bits sent from Alice to Bob are 01, apply a **bit flip** $(I_4 \otimes X)|01\rangle_{12} \otimes (\alpha|1\rangle_3 + \beta|0\rangle_3) = |01\rangle_{12} \otimes (\alpha|0\rangle_3 + \beta_1|1\rangle_3)$

If the bits sent from Alice to Bob are 10, apply a **phase flip**

 $(I_4 \otimes Z)|10\rangle_{12} \otimes (\alpha|0\rangle_3 - \beta|1\rangle_3) = |10\rangle \otimes (\alpha|0\rangle_3 + \beta|1\rangle_3) = |10\rangle_{12} \otimes |\psi\rangle_3$

If the bits sent from Alice to Bob are 11, apply a bit & phase flip

 $(I_4 \otimes Z)(I_4 \otimes X)|11\rangle_{12} \otimes (\alpha|1\rangle_3 - \beta|0\rangle_3) = (I_4 \otimes Z)|11\rangle_{12} \otimes (\alpha|0\rangle_3 - \beta|1\rangle_3)$ $= |11\rangle_{12} \otimes (\alpha|0\rangle_3 + \beta|1\rangle_3) = |11\rangle_{12} \otimes |\psi\rangle_3$

Teleportation and Superdense Coding

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

Superdense Coding

Next we will see that

Superdense Coding

Suppose Alice and Bob each have one qubit and the joint two qubit wave function is the entangled state $|\Phi_{\perp}\rangle = \frac{1}{-1}(|00\rangle + |11\rangle)$

$$|\Phi_{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice wants to send two bits to Bob. Call these bits b_1 and b_2 .

Alice applies the following operator to her qubit:

Bob then measures in the Bell basis to determine the two bits.

The four Bell states

- can be turned into each other
- using operations on only one of the qubits:

$$|\Phi_{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
$$(X \otimes I)|\Phi_{+}\rangle = (X \otimes I)\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|10\rangle + |01\rangle) = |\Psi_{+}\rangle$$
$$(Z \otimes I)|\Phi_{+}\rangle = (Z \otimes I)\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) = |\Phi_{-}\rangle$$
$$(ZX \otimes I)|\Phi_{+}\rangle = (ZX \otimes I)\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) = \frac{1}{\sqrt{2}}(-|10\rangle + |01\rangle) = |\Psi_{-}\rangle$$

Superdense Coding

Initially:
$$|\Phi_+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Alice applies the following operator to her qubit: $Z^{b_2}X^{b_1}$

$$(Z^{b_2}X^{b_1}\otimes I)|\Phi_+\rangle$$

Bob can uniquely:

- determine which of the four states he has
- figure out Alice's two bits!

$$b_{1} = 0, b_{2} = 0 \qquad |\Phi_{+}\rangle$$

$$b_{1} = 0, b_{2} = 1 \qquad (Z \otimes I) |\Phi_{+}\rangle = |\Phi_{-}\rangle$$

$$b_{1} = 1, b_{2} = 0 \qquad (X \otimes I) |\Phi_{+}\rangle = |\Psi_{+}\rangle$$

$$b_{1} = 1, b_{2} = 1 \qquad (ZX \otimes I) |\Phi_{+}\rangle = |\Psi_{-}\rangle$$

Superdense Coding

Teleportation and Superdense Coding

Teleportation says we can replace transmitting a qubit with a shared entangled pair of qubits plus two bits of classical communication.

2 bits = 1 qubit + 1 ebit

Superdense coding. We can send two bits of classical information if we share an entangled state and can communicate one qubit of quantum information.