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No-Cloning Theorem

One could, with high probability, learn a qubit state, if there was a way to make copies of a qubit

● prior to making the measurement
● without running the whole computation over again

Copy the state of |q> to the clean register |0>

U|q>|0> = |q>|q>

Assume two arbitrary states |a> and |b>

U(|a>|0>)=|a>|a> and U(|b>|0>)=|b>|b>

Moreover

U(a|a> + b|b>)|0> = U(a|a>|0>) + U(b|b>|0>) = a|aa> + b|bb>

U(a|a> + b|b>)|0> = (a|a> + b|b>)(a|a> + b|b>) = a2|aa> + b2|bb> + ab|ab> + ab|ba>



No-Cloning Theorem

Moreover

U(a|a> + b|b>)|0> = U(a|a>|0>) + U(b|b>|0>) = a|aa> + b|bb>

U(a|a> + b|b>)|0> = (a|a> + b|b>)(a|a> + b|b>) = a2|aa> + b2|bb> + ab|ab> + ab|ba>

Such that

a = a2

b = b2

ab = 0

Only if a=0 and b=0 Arbitrary quantum 
states cannot be 

copied !



One-Time Pad (OTP)

Encrypt a secret message with a random key that
is as long as the message itself

● cipher will not be crackable.
● communication partner must have 

the same key
● cannot use the same key twice

If Alice and Bob:

● share a secret key K∈ {0,1}n 
● Alice can send C = M⊕K over the channel
● Bob learns M by adding K to what he received C = (M⊕K)⊕K
● if Eve didn’t know anything about K then she learns 

nothing about M from tapping the message M⊕K 
that goes over the channel.



Quantum Key Distribution

How do you distribute a secret key without meeting in person? 

The basic model for QKD protocols involves two parties

● wishing to exchange a key
● both with access to a classical public communication channel 
● a quantum communication channel. 

Fundamental: Eve cannot eavesdrop without affecting the qubit stream between Alice and Bob.



BB84: Bennett and Brassard 1984

The main property of quantum mechanics that we’ll use:

● if a bit b is encoded in an unknown basis
● Eve cannot get information about b without disturbing the state
● the latter can be detected by Alice and Bob

Consider two possible bases:

● 0: Z basis is the computational basis |0〉,|1〉
● 1: X basis is the Hadamard basis |+〉,|−〉

BB84 protocol:

1. Alice chooses n random bits a1,...,an and n random bases b1,...,bn.
a. She sends ai to Bob in basis bi over the public quantum channel
b. For example, if ai = 0 (value) and bi = 1 (basis) then the ith qubit that she sends is in state |+〉

2. Bob chooses random bases b′1,...,b′n 
a. measures the qubits he received in those bases
b. yielding bits a′1,...,a′n



BB84: Bennett and Brassard 1984

3. Bob sends Alice all b′i, and Alice sends Bob all bi 

a. For roughly n/2 of the i’s, Alice and Bob used the same basis bi=b′i

b. For those i’s Bob should have a′i=ai 

i. if there was no noise 
ii. Eve didn’t tamper with the i-th qubit on the channel

c. Both Alice and Bob know for which i’s this holds
d. Let’s call these roughly n/2 positions the shared string

4. Alice randomly selects n/4 locations in the shared string, and sends Bob those locations as well as the 
value of ai at those locations.

a. Bob then checks whether they have the same bits in those positions
b. If the fraction of errors is bigger than some number p, then they suspect some eavesdropper was 

messing with the channel, and they abort
c. The number p can for instance be set to the natural error-rate that the quantum channel would 

have if there were no eavesdropper



Quantum Key Distribution

4. If the test is passed

a. then they discard the n/4 test-bits, 
b. have roughly n/4 bits left in their shared string. This is called the raw key

5. Now they do some classical post processing on the raw key:

a. “information reconciliation” to ensure they end up with exactly the same shared string
b. “privacy amplification” to ensure that Eve has negligible information about that shared string

Might in fact better be called quantum eavesdropper detection

● Assume that the classical channel used in steps 3–5 is “authenticated”
○ Alice and Bob know they are talking to each other, and 
○ Eve can listen but not change the bits sent over the classical channel 

● In contrast to the qubits sent during step 1 of the protocol, which Eve is allowed to manipulate in any 
way she wants

https://homepages.cwi.nl/~rdewolf/qcnotesv2.pdf



BB84 - Example

https://arxiv.org/ftp/arxiv/papers/2003/2003.06557.pdf



QKD Networks

DARPA QKD Network

● The world's first QKD network 
● presented in December 2002 by BBN Technologies and 

Harvard and Boston Universities
● laid the foundation for the further development of trusted 

repeater QKD networks
● demonstrated practically the disadvantages of a switched 

QKD network type

The network consisted of:

● a weak-coherent BB84 transmitter pair (Anna and Alice)
● a pair of compatible receivers (Boris and Bob) 

● one 2×2 optical switch to connect any sender to any 
receiver 

https://dl.acm.org/doi/fullHtml/10.1145/3402192



Entanglement Swapping
A ---- B   C ---- D           A and D can be arbitrarily distant, B and C next to each other

A -----------------D           After performing an operation on B and C -> A and D are 
entangled

Quantum repeater networks

● make end-to-end entanglement
● entanglement is a consumable resource

[vanMeter] https://datatracker.ietf.org/meeting/104/materials/slides-104-qirg-sessa-tutorial-on-quantum-repeaters-pdf-00
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Create Bell pair state

Inverse operation: Bell measurement



Drone-to-Drone QKD



An integrated space-to-ground quantum 
communication network over 4,600 kilometres

The network consists of five layers: the 
application layer, the classical logical layer, 
the classical physical layer, the quantum 
logical layer and the quantum physical 
layer. As an example, we consider how a 
secure transmission from Beijing to 
Shanghai works. The message 
transmission order is sent from the user in 
Beijing to the computer (1). The computer 
sends an order to the key management 
system to ask for the key (2) and to the 
router to find the classical route for 
classical information transfer (3). The key 
management system checks whether the 
key is sufficient. If it is, it sends the key to 
the computer (4); otherwise, it sends an 
order to the quantum system server to 
generate more keys (5). The quantum 
system server sends the order to the 
quantum control system (6), which finds the 
optimal key generation route and sends the 
order to generate keys (7). The keys are 
generated in the quantum physical layer 
and stored in the key management system 
(8). After encoding or decoding the 
message with the key (9), the information 
can be transferred securely to the user in 
Shanghai (10).



Entangled State

1/sqrt(2) * (|01> - |10>)           often called the spin singlet state

whenever the measurement is performed along the Z axis

It is always possible for Alice to predict what Bob’s result was 

Alice measures |0>, Bob measures |1>

Alice measures |1>, Bob measures |0>

They share a state that remains invariant if each apply the same unitary transformation

U =               |0> = a|a> + b|b>  and |1> = c|a> + d|b>

Replace |0> and |1>: 1/sqrt(2) (|01> - |10>) =  (ad - bc)/sqrt(2)(|ab> - |ba>)

U is unitary, (ad-bc) is a global phase factor of the form ei(theta)

Measurement results in a rotated basis on both qubits will be correlated too
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a b
c d



Entanglement and Games

Entangled states

● cannot be written as a tensor product of separate states
● the most famous one is the Bell pair

Non-local games (remember teleportation)

● explore some of the consequences of entanglement
● involves a referee and two non-communicating parties
● Alice and Bob are cooperatively trying to win the game

The game

● one round of interaction between referee and Alice and Bob:
● the referee sends

○ a (classical) question x to Alice 
○ a (classical) question y to Bob 
○ questions are sampled from some known probability distribution

● Alice and Bob respectively respond with a (classical) answer



CHSH Game

CHSH game where two players Alice and Bob 

● receive an input bit x and y respectively 
● produce an output a and b based on the input bit
● Alice’s output bit depends solely on her input bit x, and similarly for Bob

The goal is to maximize the probability to satisfy the condition:

a XOR b = x AND y

Consider the case of classical deterministic strategies

● without any randomness
● the highest probability achievable is 75%
● four bits completely characterize any deterministic strategy

● Let a0, a1 be the outputs that Alice outputs outputs if x=0 and x=1
● Let b0, b1 be the outputs Bob gives on inputs y=0 and y=1

Not possible to satisfy 
all four equations  
simultaneously, since 
summing them modulo 
2 yields 0 = 1



CHSH Game

With quantum correlations

● it can achieve higher success probability
● two players start with a shared Bell-pair entangled state
● the random input x and y is provided by referee for Alice and Bob

The success probability of satisfying the above condition will be cos(theta/2)^2 if Alice 
and Bob measure their entangled qubit in measurement basis V and W where angle 
between V and W is theta.

Maximum success probability is

● cos(pi/8)^2 ~ 85.3% when theta = pi/4.
● In the usual implementation, Alice and Bob share the Bell state with the same value 

and opposite phase. If the input x (y) is 0, Alice (Bob) rotates in Y-basis by angle 
-pi/16 and if the input is 1, Alice (Bob) rotates by angle 3pi/16



CHSH Game

What Alice does:

● if x=0 then Alice applies R(−π/16) to her qubit
● if x=1 she applies R(3π/16)
● then Alice measures her qubit in the computational basis
● outputs the resulting bit a

Bob’s procedure is the same, depending on his input bit y

After the measurements

● the probability that a⊕b= 0 is cos(θ1+θ2)
2

● the first condition is satisfied with probability cos(π/8)2 for all four input 
possibilities



Start with

Consider the rotation matrix

After Alice uses theta1 and Bob uses theta2

CHSH Game

https://github.com/qiskit-community/qiskit-community-tutorials/blob/master/awards/teach_me_qiskit_2018/chsh_game/CHSH%20game-tutorial.ipynb



Bell States

B0 = 1/sqrt(2)(|00> + |11>) very often called a Bell pair state

B1 = 1/sqrt(2)(|01> + |10>)   flip the second state |0> to |1>

B2 = 1/sqrt(2)(|00> - |11>)  flip the phase from + to -

B3 = 1/sqrt(2)(|01> - |10>)   the spin singlet state from the previous slide

B0, B1, B2 are also invariant if transformed according to their relation to B3

For example, for B0 considering the observables Z and X:

- Alice measures in Z and sees |0>
- the state on Bob’s side is |0>:  measures X (rotated basis) and sees with equal 

probability |+> or |->
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Bell’s Inequalities

Is there a set of instructions that tells the particles how to react when they are measured?

Bell Inequalities are a test for locality by considering the correlations between measurement 
outcomes obtained by two parties who share an entangled state

● classical correlations
○ encoded in a set of instructions using hidden variables with known values
○ there is a joint probability distribution that governs the possible outcomes of all measurements
○ then the outcome of any measurement can be predicted with certainty

● quantum correlations

One possible approach:

● take three binary properties A, B and C
● model classic probabilistic behaviour by an inequality
● test on multiple quantum states by collecting statistics
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Classical: Count the number of events satisfying a condition

● Assume that the binary properties are randomly measured 
● A = {+1, -1}, B = {+1, -1}, C = {+1,-1}
● Formulate an inequality that is classically  correct (see below)

○ N(AB’) = number of times A is +1 and B is -1
○ N(BC’) = number of times B is +1 and C is -1
○ N(AC’) = number of times A is +1 and C is -1

N(AB’) + N(BC’) >= N(AC’)

N(AB’) = N(AB’C) + N(AB’C’), because C can be either +1 or -1

N(BC’)= N(ABC’) + N(A’BC’), because A can be either +1 or -1

N(AC’)=N(ABC’) + N(AB’C’), because B can be either +1 or -1

N(AB’C) + N(AB’C’) + N(ABC’) + N(A’BC’) >= N(ABC’) + N(AB’C’)

N(AB’C) + N(A’BC’) >= 0 → it is correct, sum of two positive values > 0
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Quantum: Validate experimentally by measuring repeatedly

Given an ensemble of entangled states, for example, B0

● Three axis: Z and two others rotated by angle theta and 2theta
● Alice and Bob randomly choose along which axis A, B, or C to measure

cos(angle/2)|A+>  ;  sin(angle/2)|A->  >  
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cos(angle/2)
sin(angle/2)

|A+>
theta

|A->
|B+>

|B->

|C+>

|C->
theta

N(AB’) + N(BC’) >= N(AC’)

P(A+, B-) + P(B+, C-) >= P(A+, C-)

sin2(theta/2) + sin2(theta/2) >= sin2(theta)

For small angles sin(x) = x

2 * (theta2/4) >= theta2 Violates Inequality





Instructions: Hidden Variables -> Counting is the value 
of N
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A B C

+ + +

+ + -

+ - +

+ - -

- + +

- + -

- - +

- - -

Before:
1. each experiment
2. the Bell pair is 

constructed 
3. sent to Alice and Bob

The particles decide how 
to react locally to the 
measurements

→ instructions

On next slide: Instead of three properties(e.g. A,B,C) use three devices and a single property


