(Practical Quartum Computing

Lecture 6

The early algorithms: Bernstein - Vazirani

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teachina/siena/

https://homes.cs.washington.edu/~dabacon/teaching/siena/

Classical Promise Problem Query Complexity

Given: A black box which computes some function

I

K bit input —

functions.

— f(z)

—— K bit output

black box
Promise: the function belongs to a set S which is a subset of all possible

Properties: the set S can be divided into disjoint subsets S1,85,...,Sm

Problem: What is the minimal number of times we have to use (query) the black
box in order to determine which subset &; the function belongs to?

Functions

We can write the unitary

xr — & — f(x)
k bit input —{ — Kk bit output
in outer product form as ——
U=) |f(@)(=
=0
that
so tha on_1q 5 _{O if i # 4,
U = T))(x Y o qvive p
7ly) (9{;0 [f () |>) ij 1 ifi=j.
on—1 on_1

= Y |f@))zly) = Z 1f(2))0y.e = | (»))

=0 r=

Functions

Note that the transform is unitary

2n—1

2n—1 T oong
= (Zo |f(a:)>(w|> = Zo(lf(a:)xwl)T: > 2} (f (@)
= = =0

on_q1 2" —1
UsUL = (> 1f (@) w) (Z)¢ f(y)> f(z)
=0 y=0
on_q X >0
= 3 1)) = wzo|f< W@l) =<
on1 : .
=Y f@)@I =1 -1 %

L precisely when f(x) is one to one!

Quantum Algorithms

1992: Deutsch-Jozsa Algorithm

. o -1
1) Exact classical query complexity: 2"+ 41

David Richar Bounded error classical query complexity: O(1)

Deutsch Jozsa _
Exact quantum q. complexity: 1

1993: Bernstein-Vazirani Algorithm (non-recursive)

Exact classical query complexity: 71

Bounded error classical query complexity: $2(n)

Umesh Ethan

T _ Exact quantum q. complexity: 1
Vazirani Bernstein

Query Complexity

-

I

I

I

S -
: U, e
I

I

I

S

E> ly ® f(x))

-

f:ze{0,1}" - {0,1}"

Exact classical
query complexity

Bounded error
classical
query complexity

Exact quantum
query complexity

Bounded error
quantum
query complexity

probability

0 Bounded
error
algorithms

1/3 | are allowed
to fail with
a bounded
probability

0 of failure.

1/3

BPP, BQP

Informally, a problem is in BPP (bounded-error
probabilistic polynomial time) if there is an
algorithm for it that has the following properties:

e s allowed to flip coins and
decisions

make random

e s guaranteed to run in polynomial time

e on any given run of the alg
probability of at most 1/3 ¢
wrong answer, whethe
or NO.

In complexity theory, PP is
the class of decision
problems solvable by a
probabilistic Turing machine
in polynomial time, with an
error probability of less than
1/2 for all instances. The
abbreviation PP refers to

probabilistic polynomial time.

A PP algorithm is permitted
to have a probability that
depends on the input size,
whereas BPP does not.

Informally, a decision problem is a member of
BQP (bounded-error quantum polynomial time)
if there exists a quantum algorithm (an algorithm
that runs on a quantum computer):

e that solves the decision problem with high
probability

e is guaranteed to run in polynomial time

e arun of the algorithm will correctly solve
the decision problem with a probability of
at least 2/3.

It is the quantum analogue to the complexity
class BPP

Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output
frze{0,1}" —{0,1}
Promise: The function is of the form

f(w):(a,w)@b G,E{O,l}n bE{O,l}

Y-z =y121 Dy2x2 D - S ynxn
Problem: Find the n bit string a

Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output
f:xe€{0,1}" — {0,1}

Promise: The function is of the form

f(w):(a,w)@b aE{O,l}n bE{O,l}

Y-z =y121 Dy2x2 D - S ynxn
Problem: Find the n bit string a

Notice that the querying f yields a single bit of information. But we need n
bits of information to describe a.

Classical Bernstein-Vazirani

Notice that the querying f yields a single bit of information. But we need n bits of
information to describe a.

Classically, the most efficient method to find the secret string is by evaluating the
function n times with the input values z =2 foralii € {0,1,...,n -1}

£(1000---0,) = s;
£(0100---0,) = s
£(0010---0,) = s3

£(0000-- - 1,,) s,

Implement the oracle

fl@) =(a-z)®b

YT =y1x1 By2x2 D

a . a
b o b
c D c® ab

>

[N
>

4R
\J/

Quantum Bernstein-Vazirani

0) H -
0) H -
n qubits 4 (o) SN 1 2 y+b
J H I —1 o 1 &
U, \/2_”y§o()y \/—yZ() |y)
0) H -
T L0y - 1) K
* V2 for phase kickback
2n—_1
H®"|0) ® H|1) = —(IO 1))

\/_

Quantum Bernstein-Vazirani

Show the phase kickback

|Register>|b>|->

if |o> == |0> (when f(x) == 0)
+|Register>|b>|->

elif |o> == |1> (when f(x) == 1)

-|Register>|b>|->

0)

0)

0)

0)

1)

Hadamard it! (Interference)

1 2t yawtd 1 2= a-y+br_1\2y
H® \/2_n Z(1)2¥T0)y) =2—nw20(—1) (=1)"Y|z)
I s
})/%\03 7‘/”{ | o 4—(*1))%]5)
[0 -/\M =i}
L...
IX>MZ< 19>

(1) — (oA \Q . (—*5’4 [
) 2
13- S) b\5> c

_4\b27—1 [2n—1
=50 % (> (—1>a°y+fc°y))

z=0 \ y=0

Hadamard it! (Interference)

2"
1
Hg®n Z(1)ay—|—b‘y Z (— 1)ay—|—b(1)%Y|z)
20y z,y=0
(_1)192”—1 2n—1
=5 2 | X (DT)
z=0 \ y=0
n_1 1
Z (_1)a-y—|—x-y — Z (_1)a1y1+"-+anyn+:c1y1—I—---—I—xnyn
y=0 Y15-yn=>0
— Z Z (—1)2v1ttanyntriyi+--+nyn
y].:Oa]- anO,l
= ((-1)04(—1)mtey S .o N (—1)8v2ttanyntrayottenyn

yQZO’]‘ yn:O,l

— n _ n
=2 5001@15@2,332 to 5an,$n =2 5a,x

Hadamard it! (Interference)

1 20
(1)ay—|—b (1)a y-l—b(1);1;yx
V7 2 Z) ,yZO)

_1)b2"—1 [2"—1
O (e

=0 y=0

Hn

2"—1 1

y:O yla"')ynzo
— Z - Z (_]_)alyl‘|‘""|‘anyn—|-$1y1—I—---—I—mnyn
y].:Oa]- yn:O,l

=|((-1)04 (1)@t | S .. Y (—1)svttanyntrayotFenyn
122031 yn:O,l

n __ N
=|2"Pa1,21%a0,25 * * * Oan,an = 2" 00,z

1 2 on
(—1)* y+b — (_1)19 Sa.n|z) = (_1)6 4
"7 2 Z W) 3 e)

H®

Quantum Bernstein-Vazirani

|0) H

|0) H

N~ o —m
qubits

i |0) H

1) H

H}— A
al|
H—{
A A

We can determine a using only a single quantum query!

+

afxee\c

