(Practical Quartum Computing

Lecture 6

The early algorithms: Bernstein - Vazirani

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teachina/siena/



https://homes.cs.washington.edu/~dabacon/teaching/siena/

Classical Promise Problem Query Complexity

Given: A black box which computes some function
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K bit input —

functions.

— f(z)

—— K bit output

black box
Promise: the function belongs to a set S which is a subset of all possible

Properties: the set S can be divided into disjoint subsets S1,85,...,Sm

Problem: What is the minimal number of times we have to use (query) the black
box in order to determine which subset &; the function belongs to?



Functions

We can write the unitary
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Functions

Note that the transform is unitary
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L precisely when f(x) is one to one!



Quantum Algorithms

1992: Deutsch-Jozsa Algorithm

. o -1
1) Exact classical query complexity: 2"+ 41

David  Richar Bounded error classical query complexity: O(1)

Deutsch Jozsa _
Exact quantum q. complexity: 1

1993: Bernstein-Vazirani Algorithm (non-recursive)

Exact classical query complexity: 71

Bounded error classical query complexity: $2(n)

Umesh Ethan

T _ Exact quantum q. complexity: 1
Vazirani Bernstein



Query Complexity
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BPP, BQP

Informally, a problem is in BPP (bounded-error
probabilistic polynomial time) if there is an
algorithm for it that has the following properties:

e s allowed to flip coins and
decisions

make random

e s guaranteed to run in polynomial time

e on any given run of the alg
probability of at most 1/3 ¢
wrong answer, whethe
or NO.

In complexity theory, PP is
the class of decision
problems solvable by a
probabilistic Turing machine
in polynomial time, with an
error probability of less than
1/2 for all instances. The
abbreviation PP refers to

probabilistic polynomial time.

A PP algorithm is permitted
to have a probability that
depends on the input size,
whereas BPP does not.

Informally, a decision problem is a member of
BQP (bounded-error quantum polynomial time)
if there exists a quantum algorithm (an algorithm
that runs on a quantum computer):

e that solves the decision problem with high
probability

e is guaranteed to run in polynomial time

e arun of the algorithm will correctly solve
the decision problem with a probability of
at least 2/3.

It is the quantum analogue to the complexity
class BPP



Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output
frze{0,1}" —{0,1}
Promise: The function is of the form

f(w):(a,w)@b G,E{O,l}n bE{O,l}

Y-z =y121 Dy2x2 D - S ynxn
Problem: Find the n bit string a



Bernstein-Vazirani Problem

Given: A function with n bit strings as input and one bit as output
f:xe€{0,1}" — {0,1}

Promise: The function is of the form

f(w):(a,w)@b aE{O,l}n bE{O,l}

Y-z =y121 Dy2x2 D - S ynxn
Problem: Find the n bit string a

Notice that the querying f yields a single bit of information. But we need n
bits of information to describe a.



Classical Bernstein-Vazirani

Notice that the querying f yields a single bit of information. But we need n bits of
information to describe a.

Classically, the most efficient method to find the secret string is by evaluating the
function n times with the input values z =2 foralii € {0,1,...,n -1}

£(1000---0,) = s;
£(0100---0,) = s
£(0010---0,) = s3

£(0000-- - 1,,) s,



Implement the oracle
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Quantum Bernstein-Vazirani
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Quantum Bernstein-Vazirani

Show the phase kickback

|Register>|b>|->

if |o> == |0> ( when f(x) == 0)
+|Register>|b>|->

elif |o> == |1> ( when f(x) == 1)
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Hadamard it! (Interference)
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Hadamard it! (Interference)
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Hadamard it! (Interference)
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Quantum Bernstein-Vazirani
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We can determine a using only a single quantum query!
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