
Practical Quantum Computing

Lecture 8
Quantum Algorithms: Simon’s and Grover

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/ 

https://homes.cs.washington.edu/~dabacon/teaching/siena/


Context

The Deutsch-Jozsa problem showed an exponential quantum improvement over 
the best deterministic classical algorithms.

The Bernstein-Vazirani problem shows a polynomial improvement over 
the best randomized classical algorithms that have error probability ≤ 1/3. 

Combine these two features and see a problem where quantum computers are 
exponentially more efficient than bounded-error randomized algorithms.

https://arxiv.org/pdf/1907.09415.pdf



Simon’s Problem

Given: A function with n bit strings as input and one bit as output

Promise: The function is guaranteed to satisfy

Problem: Find the n bit string 



Classical Simon’s Problem

Promise: The function is guaranteed to satisfy

Suppose we start querying the function and build up a list of the pairs

If we find                such that                         then we solve the problem

But suppose we start querying the function m times

Probability of getting a matching pair:

Bounded error query complexity: 



Quantum Simon’s Problem

Unlike previous problems, we can’t use the phase kickback trick 
because there is no structure in the function.

 n qubits

 m qubits



Quantum Simon’s Problem

Measure the second register

Using the promise on the function

This implies that after we measure, we have the state

For random uniformly distributed

uniformly distributed = all strings equally probable. 

measuring this state at this time does us no good ...



Quantum Simon’s Problem

Measuring this state at this time in the computational basis does us no good….

For random uniformly distributed

Measurement yields either           or                                              

But we don’t know x, so we can’t use this to find s.

Add Hadamard gates to the end register
H

H

H



Quantum Simon’s Problem

 n qubits

 n qubits



Quantum Simon’s Problem

Measuring this state, we obtain uniformly distributed random values of      s.t.

If              we have eliminated the possible values of s by half



Quantum Simon’s Problem

On values of       which are 0, this doesn’t restrict 

On values of       which are 1, the corresponding       must XOR to 0. 

This restricts the set of possible     ‘s by half.



Quantum Simon’s Problem

Think about the bit strings s as vectors in 

● If we obtain n lin. indep. equations of this form, we win
● (Gaussian elimination)

Suppose we have k linearly independent      ‘s.  What is the probability 

that            is linearly independent of previous     ‘s? 

https://arxiv.org/pdf/1907.09415.pdf



Quantum Simon’s Problem

What is the probability that our n-1 equations are linearly independent?

With constant probability:

● we obtain linearly independence -> Gaussian elimination O(n^3)
● solve Simon’s problem





Applications of Grover’s Algorithm
Grover’s algorithm is a framework

● It does not offer the exponential speedup like Shor’s alg.
● Can be extended for different problems

● cryptanalysis AES
● combinatorial optimisation - e.g. travelling salesman
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Borbely E. Grover search algorithm. arXiv preprint arXiv:0705.4171. 2007 May 29. - step by step derivation of Grover iterations



Quantum computers can search faster than a classical ones
● Assume the entries are indexed 0, 1, 2, 3, …., N

● Use binary vectors
○ Of the form 0 = 10….000, 1 = 01….000, … , N = 00...001

○ The length of the vectors is N bits

○ A bit signals if an entry is found in the database

○ Practically, multiple entries can be sought and then multiple bits will be on

● E.g. the vector |3>  will have a 1 at the fourth index (zero-indexed)

● Search: “Is the entry with index F in the list 0,1,…..,N?”

● Simplify and assume that the search is always for F=N (relabel the database entries)

|0> 0
0
0
1

|1>

|2>

|3>
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Building block - Inner product
Example: a = (0, 0, 0, 1) b = (1, 1, 1, 1)  -> ab = 0*1 + 0*1 + 0*1 + 1*1 = 1
Can be written as the multiplication of a row vector with a column vector

                            (0, 0, 0, 1)         = 0*1 + 0*1 + 0*1 + 1*1 = 1

Depending if the vector is row or column we can use special notation
<a| for row vector |a> for column vector

such that <a||b> is the notation for the inner product 
Shorthand notation <a|b> = 1

1
1
1
1
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The why: We will 
use this notation 
to determine the 
relative rotation 
(angle) between 

two vectors



Building block - Angle between vectors

|a>

|b>

theta
draw it beautiful |b>

|a>

theta
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In general, <a|b> = |a||b|cos(theta)
where |a| and |b| are the length of the vectors

Simplify and assume that all vectors have unit length, such that <a|b> = cos(theta)

The why: Useful 
for building a 

method to rotate a 
third vector by 

knowing the angle 
between two other 

vectors 



Building block - rotate with twice the angle of theta

|b>

|a>

theta

|r>

|b>

|a>

theta

|r’>

|b>

|a>

theta

|r”>

after mirror against |b> after mirror against |a>

|r>|r>
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The why: Build a 
method to move |r> 

such that it is 
orthogonal to |b>



Building block - Number of mirror seq. to rotate pi/2

|b>

|a>

|r>

How many rotations (k=?) are necessary to get to pi/2?

theta + k*2*theta    = pi/2

2k        = pi/(2 * theta) - 1

k = round(pi/(4*theta) - ½)

Use large values of M to create very small angles theta = 1/M 
Example: sin(1/256) = 1/256, cos(1/256) = 1

The difference between classical and quantum is the value of M! 
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k = approx. M

The why: It 
indicates where 

the quantum 
speed-up is coming 

from!



Input to Output

Rotations Rotations Rotations

1
0
0
0

0
0
0
1

M times

Input Output

Classical computer: 
● exhaustive M=N=2n

● random M=N/2=2n-1

|N>

|0>
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The why: This is a 
sketch of a 

quantum circuit 
looks like

blue is for the Grover speedup

red is for classical runtime



Building rotations - Outer product - Rotations
1) Transform |0> to |1> and |1> to |0> where |0> =       and |1>=        
The bit flip matrix X =             =             +            = |0X1| + |1X0|

2) Define a matrix that takes |0> to |+> = |0>+|1> and |1> to |-> = |0>-|1>
|0>(<0| + <1|) = 
|1>(<1| - <1|) = 

3) Define a matrix that applies the X matrix only if the state of another vector is |1>
|00X00|  + |01X01|  + |10X11|  + |11X10|

1
0

0
1

0 1
1 0

0 1
0 0

0 0
1 0
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The why: Mirroring 
against the two 

vectors has to be 
implemented 

mathematically

1 1
0 0

0 0
1 -1

1 1
1 -1 (almost) Hadamard matrix

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT matrix



Building rotations - Encoding conditions for rotations

IF

THEN

IF

IF

IF

THEN

AND

f(x)

Boolean 
function

|0> |f(x)>
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The why: Recipe 
for building 

rotations 
depending on 
configurable 

criteria

Classical problems 
can be imported 
into a quantum 

algorithm



The quantum state
Previous statement: All vectors have unit length
A quantum state is a complex vector whose L2 norm is 1
● A qubit is a 2-dimensional complex vector. Examples |0>, |1>, |+>, |->
● The state of a n-qubit circuit is a 2n-dimensional complex vector 

Example n=2, the state has four entries and the matrix has size 4 x 4

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2n

2n

A quantum circuit is a  2n x 2n matrix

Entries in a state vector can be different from zero

Bell state 2-1/2(|00> + |11>) 
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The why: There is 
an exponential 

representational 
explosion that is 
often mentioned 

when quantum 
computations are 

discussed



The superposition state |S>
An n-qubit state has length 2n

Define the n-qubit  
|S> =   2-n/2 (|00….00>  + |00….01> + … + |11….11>)

Assume that the sought element is |N>=|11….11>
<F|S> = 2-n/2 = 1/M

As a result, M = sqrt(2n) rotations are needed
Each rotation (called Grover iteration) consists of
1) mirror around |Fp>
2) mirror around |S>

|Fp>

|S>

theta

|F>
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equal superposition |S> with H gates

The why: We create 
a small enough 

angle necessary to 
implement the 
sequence of 

rotations with the 
necessary speedup



The Grover search circuit for n=3 qubits

Rotations Rotations

~2 times

Ora
cle Diffusion operator Ora

cle Diffusion operator
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superposition
state



Grover’s Algorithm Summary
For N = 1000 entries
● classical exhaustive search method needs 1000 steps
● Grover’s algorithm needs approx. 32 steps

The key concepts presented:
● quantum qubit, gate, circuit
● how to import classical problems (Boolean logic) into quantum circuits

The key elements of the algorithm are:
● Mirroring operations

○ a known vector - the equal superposition state

○ a configurable vector - the search criteria

○ mirror operations are implemented with quantum gates

● The speed-up is from the L2 norm to calculate the distance between two qubit states
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