
Practical Quantum Computing

Lecture 8
Quantum Algorithms: Simon’s and Grover

with slides from Dave Bacon https://homes.cs.washington.edu/~dabacon/teaching/siena/

https://homes.cs.washington.edu/~dabacon/teaching/siena/

Context

The Deutsch-Jozsa problem showed an exponential quantum improvement over
the best deterministic classical algorithms.

The Bernstein-Vazirani problem shows a polynomial improvement over
the best randomized classical algorithms that have error probability ≤ 1/3.

Combine these two features and see a problem where quantum computers are
exponentially more efficient than bounded-error randomized algorithms.

https://arxiv.org/pdf/1907.09415.pdf

Simon’s Problem

Given: A function with n bit strings as input and one bit as output

Promise: The function is guaranteed to satisfy

Problem: Find the n bit string

Classical Simon’s Problem

Promise: The function is guaranteed to satisfy

Suppose we start querying the function and build up a list of the pairs

If we find such that then we solve the problem

But suppose we start querying the function m times

Probability of getting a matching pair:

Bounded error query complexity:

Quantum Simon’s Problem

Unlike previous problems, we can’t use the phase kickback trick
because there is no structure in the function.

 n qubits

 m qubits

Quantum Simon’s Problem

Measure the second register

Using the promise on the function

This implies that after we measure, we have the state

For random uniformly distributed

uniformly distributed = all strings equally probable.

measuring this state at this time does us no good ...

Quantum Simon’s Problem

Measuring this state at this time in the computational basis does us no good….

For random uniformly distributed

Measurement yields either or

But we don’t know x, so we can’t use this to find s.

Add Hadamard gates to the end register
H

H

H

Quantum Simon’s Problem

 n qubits

 n qubits

Quantum Simon’s Problem

Measuring this state, we obtain uniformly distributed random values of s.t.

If we have eliminated the possible values of s by half

Quantum Simon’s Problem

On values of which are 0, this doesn’t restrict

On values of which are 1, the corresponding must XOR to 0.

This restricts the set of possible ‘s by half.

Quantum Simon’s Problem

Think about the bit strings s as vectors in

● If we obtain n lin. indep. equations of this form, we win
● (Gaussian elimination)

Suppose we have k linearly independent ‘s. What is the probability

that is linearly independent of previous ‘s?

https://arxiv.org/pdf/1907.09415.pdf

Quantum Simon’s Problem

What is the probability that our n-1 equations are linearly independent?

With constant probability:

● we obtain linearly independence -> Gaussian elimination O(n^3)
● solve Simon’s problem

Applications of Grover’s Algorithm
Grover’s algorithm is a framework

● It does not offer the exponential speedup like Shor’s alg.
● Can be extended for different problems

● cryptanalysis AES
● combinatorial optimisation - e.g. travelling salesman

14
Borbely E. Grover search algorithm. arXiv preprint arXiv:0705.4171. 2007 May 29. - step by step derivation of Grover iterations

Quantum computers can search faster than a classical ones
● Assume the entries are indexed 0, 1, 2, 3, …., N

● Use binary vectors
○ Of the form 0 = 10….000, 1 = 01….000, … , N = 00...001

○ The length of the vectors is N bits

○ A bit signals if an entry is found in the database

○ Practically, multiple entries can be sought and then multiple bits will be on

● E.g. the vector |3> will have a 1 at the fourth index (zero-indexed)

● Search: “Is the entry with index F in the list 0,1,…..,N?”

● Simplify and assume that the search is always for F=N (relabel the database entries)

|0> 0
0
0
1

|1>

|2>

|3>

15

Building block - Inner product
Example: a = (0, 0, 0, 1) b = (1, 1, 1, 1) -> ab = 0*1 + 0*1 + 0*1 + 1*1 = 1
Can be written as the multiplication of a row vector with a column vector

 (0, 0, 0, 1) = 0*1 + 0*1 + 0*1 + 1*1 = 1

Depending if the vector is row or column we can use special notation
<a| for row vector |a> for column vector

such that <a||b> is the notation for the inner product
Shorthand notation <a|b> = 1

1
1
1
1

16

The why: We will
use this notation
to determine the
relative rotation
(angle) between

two vectors

Building block - Angle between vectors

|a>

|b>

theta
draw it beautiful |b>

|a>

theta

17

In general, <a|b> = |a||b|cos(theta)
where |a| and |b| are the length of the vectors

Simplify and assume that all vectors have unit length, such that <a|b> = cos(theta)

The why: Useful
for building a

method to rotate a
third vector by

knowing the angle
between two other

vectors

Building block - rotate with twice the angle of theta

|b>

|a>

theta

|r>

|b>

|a>

theta

|r’>

|b>

|a>

theta

|r”>

after mirror against |b> after mirror against |a>

|r>|r>

18

The why: Build a
method to move |r>

such that it is
orthogonal to |b>

Building block - Number of mirror seq. to rotate pi/2

|b>

|a>

|r>

How many rotations (k=?) are necessary to get to pi/2?

theta + k*2*theta = pi/2

2k = pi/(2 * theta) - 1

k = round(pi/(4*theta) - ½)

Use large values of M to create very small angles theta = 1/M
Example: sin(1/256) = 1/256, cos(1/256) = 1

The difference between classical and quantum is the value of M!

19

k = approx. M

The why: It
indicates where

the quantum
speed-up is coming

from!

Input to Output

Rotations Rotations Rotations

1
0
0
0

0
0
0
1

M times

Input Output

Classical computer:
● exhaustive M=N=2n

● random M=N/2=2n-1

|N>

|0>

20

The why: This is a
sketch of a

quantum circuit
looks like

blue is for the Grover speedup

red is for classical runtime

Building rotations - Outer product - Rotations
1) Transform |0> to |1> and |1> to |0> where |0> = and |1>=
The bit flip matrix X = = + = |0X1| + |1X0|

2) Define a matrix that takes |0> to |+> = |0>+|1> and |1> to |-> = |0>-|1>
|0>(<0| + <1|) =
|1>(<1| - <1|) =

3) Define a matrix that applies the X matrix only if the state of another vector is |1>
|00X00| + |01X01| + |10X11| + |11X10|

1
0

0
1

0 1
1 0

0 1
0 0

0 0
1 0

21

The why: Mirroring
against the two

vectors has to be
implemented

mathematically

1 1
0 0

0 0
1 -1

1 1
1 -1 (almost) Hadamard matrix

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT matrix

Building rotations - Encoding conditions for rotations

IF

THEN

IF

IF

IF

THEN

AND

f(x)

Boolean
function

|0> |f(x)>

22

The why: Recipe
for building

rotations
depending on
configurable

criteria

Classical problems
can be imported
into a quantum

algorithm

The quantum state
Previous statement: All vectors have unit length
A quantum state is a complex vector whose L2 norm is 1
● A qubit is a 2-dimensional complex vector. Examples |0>, |1>, |+>, |->
● The state of a n-qubit circuit is a 2n-dimensional complex vector

Example n=2, the state has four entries and the matrix has size 4 x 4

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2n

2n

A quantum circuit is a 2n x 2n matrix

Entries in a state vector can be different from zero

Bell state 2-1/2(|00> + |11>)

23

The why: There is
an exponential

representational
explosion that is
often mentioned

when quantum
computations are

discussed

The superposition state |S>
An n-qubit state has length 2n

Define the n-qubit
|S> = 2-n/2 (|00….00> + |00….01> + … + |11….11>)

Assume that the sought element is |N>=|11….11>
<F|S> = 2-n/2 = 1/M

As a result, M = sqrt(2n) rotations are needed
Each rotation (called Grover iteration) consists of
1) mirror around |Fp>
2) mirror around |S>

|Fp>

|S>

theta

|F>

24

equal superposition |S> with H gates

The why: We create
a small enough

angle necessary to
implement the
sequence of

rotations with the
necessary speedup

The Grover search circuit for n=3 qubits

Rotations Rotations

~2 times

Ora
cle Diffusion operator Ora

cle Diffusion operator

25

superposition
state

Grover’s Algorithm Summary
For N = 1000 entries
● classical exhaustive search method needs 1000 steps
● Grover’s algorithm needs approx. 32 steps

The key concepts presented:
● quantum qubit, gate, circuit
● how to import classical problems (Boolean logic) into quantum circuits

The key elements of the algorithm are:
● Mirroring operations

○ a known vector - the equal superposition state

○ a configurable vector - the search criteria

○ mirror operations are implemented with quantum gates

● The speed-up is from the L2 norm to calculate the distance between two qubit states

26

