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Single-Phase Machines

▶ Single-phase machines are seldom used in real applications
▶ Why should we study them?
▶ To get more thorough understanding of fundamental concepts

▶ Flux linkages
▶ Conservative magnetic field systems
▶ Selection of state variables
▶ Modeling concepts introduced are very general and powerful

▶ 2-pole single-phase machine with a field winding is used as an example

3-phase machines will be considered in the next lecture. They are actually simpler to model, so don’t worry!
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Single-Phase Machine With a Field Winding

▶ Stator voltage

ua = Ria +
dψa

dt

▶ Stator flux linkage

ψa = La(ϑm)ia + Laf(ϑm)if

where La is the self-inductance and
Laf is the mutual inductance

▶ How to model the inductances?
▶ How to calculate the produced torque?

ϑm

ua

ia R

For constant field-winding current if , the flux linkage ψaf (ϑm) = Laf (ϑm)if due to the field winding depends only on the rotor position, just
like in permanent-magnet machines.
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Stator Winding
▶ Winding function Na tells how many times the flux links with the winding at ϑ
▶ Magnetomotive force (MMF) distribution

Fa(ϑ) = Na(ϑ)ia
π/6

Na

ϑ
ϑ

na/2 ia

Fa

naia/2

ϑπ 2π

π/6

Example stator winding with na turns1

1Slemon, Electric Machines and Drives. Addison Wesley, 1992.
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Rotor Field Winding

▶ Field winding produces the flux density distribution Bf in the airgap

ϑm

ϑ

Bf

α

α

Example geometry with α = π/2
π 2π

ϑ

g0

µ0nf if/(2g0)

Nf

ϑ

nf/2

Ff

nf if/2

ϑ2π

π/2 3π/2
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Flux Density Space Waveforms at ϑm = 0

ϑm = 0

Na

ϑ

Bf

ϑ

g

Ba

ϑ

ϑ

ϑ

π 2π

gmax

Waveforms assume gmax = 4g0Total airgap flux density Bg = Ba +Bf

3π/2π/2

na/2

µ0naia/(2g0)

g0

ia

µ0nf if/(2g0)
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Flux Density Space Waveforms at ϑm = −π/2

Na

ϑ

Bf

ϑ

g

Ba

ϑ

ϑ

π 2π3π/2π/2

ϑm = −π/2

ϑ

ia

Waveforms assume gmax = 4g0Total airgap flux density Bg = Ba +Bf
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Flux Linkage and Inductances

▶ Total airgap flux density

Bg(ϑ) = Ba(ϑ) +Bf(ϑ)

▶ Stator flux linkage

ψa = rℓ

∫ 2π

0
Na(ϑ)Bg(ϑ)dϑ

where r is the airgap radius and ℓ is the effective rotor length
▶ Inductances2

La = µ0rℓ

∫ 2π

0

N2
a (ϑ)

g(ϑ)
dϑ Laf = µ0rℓ

∫ 2π

0

Na(ϑ)Nf(ϑ)

g(ϑ)
dϑ

2Lipo, Analysis of Synchronous Machines, 2nd. CRC Press, 2012.
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Inductances

▶ Stator flux linkage

ψa = La(ϑm)ia + Laf(ϑm)if

ϑm

Laf
ϑm

La

ϑm

dψa

dt

ia

π 2π

The self-inductance La of the ideal full-pitch coil is constant, independent of the rotor position ϑm. If the effect of the stator slots on the airgap
function were taken into account, La would depend on ϑm (but not much).
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Voltage Induced by the Field Winding

▶ Stator voltage can be expressed as

ua = Ria + La(ϑm)
dia
dt

+ ia
dLa(ϑm)

dϑm
ωm + ea

▶ Voltage induced by the field winding

ea = if
dLaf(ϑm)

dt
= if

dLaf(ϑm)

dϑm
ωm

where constant if is assumed

ϑm

Laf

ea

π 2π ϑmπ/2 3π/2
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Flux Density Space Waveforms at ϑm = 0

ia

π/6
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Flux Density Space Waveforms at ϑm = −π/2

ia

ϑm = −π/2

Na

ϑ

Bf

ϑ
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ϑ ϑ
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Inductances

ψa = La(ϑm)ia + Laf(ϑm)if

ϑm

Laf

ϑm

La

dψa

dt

ia

π 2π

π/6

π/6

ϑm
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Voltage Induced by the Field Winding

ϑm

Laf

ϑm

ea

Fundamental
π 3π/2 2π

π/6
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Flux Density Space Waveforms at ϑm = 0

ϑm = 0

Na

ϑ

Bf

Ideal sinusoidal winding distribution
g

Ba

ϑ

ϑ

ϑ

π 2π3π/2π/2

ia

ϑ

It is worth noticing that only the fundamental space component of flux density produces a net flux linkage in the sinusoidally distributed stator
winding. This fact can be realized based on the flux linkage expression given earlier.
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Flux Density Space Waveforms at ϑm = −π/2

ia

ϑm = −π/2

Na

ϑ

Bf

ϑ

g
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ϑ ϑ

ϑ
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Ideal sinusoidal winding distribution
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Inductances

ψa = La(ϑm)ia + Laf(ϑm)if = [L0 + L2 cos(2ϑm)]ia +M cos(ϑm)if

ϑm

Laf

ϑm

La

dψa

dt

ia

π 2π

ϑm

M

L0

L2

It can be noticed that the sinusoidal distribution of the winding increases the variation of the self-inductance La. The induced voltage ea is not
shown, but, naturally, it becomes sinusoidal as well.
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Lossless Magnetic Field

Understanding lossless magnetic field systems often helps in developing machine
models for control purposes
▶ Very general and powerful concept
▶ Only assumption is that the magnetic field is lossless (conservative)
▶ Forces and torques in complex electromechanical systems can be determined
▶ Independent of machine type, number of terminals, number of poles, etc.
▶ Most lumped-parameter electric machine models are based on it
▶ Magnetic saturation and spatial harmonics can be taken into account
▶ Core losses can be modeled outside the lossless field system
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Lossless Magnetic Field3,4

Stored magnetic field energy Wm

▶ is a state function, depending only on its
independent state variables

▶ is independent of the path used to reach
the state

▶ can be determined completely if the
electrical port relations are known

▶ can be evaluated by means of numerical
techniques (e.g. FEM) or measurements

i1

dψ1

dt Lossless
magnetic

field

F1

dx1
dt

iN FM

dxM
dt

dψN
dt

...
...

3Woodson and Melcher, Electromechanical Dynamics. John Wiley & Sons, 1968.
4Fitzgerald, Kingsley, and Umans, Electric Machinery. McGraw-Hill, 2003.
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Example System: Single-Phase Machine With Field Winding

▶ Two electrical ports and one
mechanical port

▶ Stored field energy

Wm =Wm(ψa, ψf , ϑm)

where ψa, ψf , and ϑm are
independent state variables

▶ This example system is
considered in the following

ϑm
if

dψf

dt

dψa

dt

ia

Stator
magnetic
axis

Rotor
magnetic
axis

25 / 38



▶ Power balance

dWm

dt
= ia

dψa

dt
+if

dψf

dt
−τm

dϑm
dt

▶ Currents

ia =
∂Wm(ψa, ψf , ϑm)

∂ψa

if =
∂Wm(ψa, ψf , ϑm)

∂ψf

▶ Torque

τm = −∂Wm(ψa, ψf , ϑm)

∂ϑm

ia

dψa

dt
Lossless

magnetic field
τm

ia = ia(ψa, ψf , ϑm)

τm = τm(ψa, ψf , ϑm)

dϑm
dt

if

dψf

dt

if = if(ψa, ψf , ϑm)
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Lossless Field System Should Satisfy Reciprocity Conditions

▶ Incremental mutual inductances should be equal in any operating point

∂ia
∂ψf

=
∂if
∂ψa

▶ If multiple mechanical ports, analogous conditions hold for them as well
▶ Conditions between electrical and mechanical ports

∂ia
∂ϑm

= −∂τm
∂ψa

∂if
∂ϑm

= −∂τm
∂ψf
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Integration Path for the Field Energy Can Be Chosen Freely

▶ For illustration purposes
ψf = 0 assumed

▶ Integration along Path 1

Wm(ψa, ϑm) =

∫ ψa

0
ia(ψa, 0)dψa

−
∫ ϑm

0
τm(ψa, ϑm)dϑm

▶ We should know τm(ψa, ϑm)

ϑm

ψa0

τm=τm(ψa, ϑm)τm=0

ia= ia(ψa, 0)

ia= ia(ψa, ϑm)

Path 1a

Path 1bPath 2a

Path 2b

Path 3

Wm(ψa, ϑm)
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▶ Integration along Path 2

Wm(ψa, ϑm) =

∫ ψa

0
ia(ψa, ϑm)dψa

since τm(0, ϑm) = 0

▶ Torque is not needed in Path 2

ϑm

ψa0

τm=τm(ψa, ϑm)τm=0

ia= ia(ψa, 0)

ia= ia(ψa, ϑm)

Path 1a

Path 1bPath 2a

Path 2b

Path 3

Wm(ψa, ϑm)
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Illustration of Field Energy and Coenergy

▶ For illustration purposes
ψf = 0 assumed

▶ Area of the rectangle ψaia

▶ Relation of coenergy to field energy

Wm +W ′
m = ψaia

▶ Magnetically linear case: Wm =W ′
m

ψa

ia

W ′
m =

∫ ia

0

ψadia

Wm =

∫ ψa

0

iadψa

Coenergy

Energy

ψa = ψa(ia, ϑm)
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Field Energy and Coenergy

▶ Field energy

Wm(ψa, ψf , ϑm) =

∫ ψa

0
ia(ψa, ψf , ϑm)dψa +

∫ ψf

0
if(0, ψf , ϑm)dψf

▶ Coenergy

W ′
m(ia, if , ϑm) =

∫ ia

0
ψa(ia, if , ϑm)dia +

∫ if

0
ψf(0, if , ϑm)dif

▶ Relation of coenergy to field energy

Wm +W ′
m = ψaia + ψfif

▶ Torque is typically easier to calculate from coenergy
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Torque from Coenergy

▶ Power balance

dW ′
m

dt
= ψa

dia
dt

+ψf
dif
dt

+τm
dϑm
dt

▶ Flux linkages

ψa =
∂W ′

m(ia, if , ϑm)

∂ia

ψf =
∂W ′

m(ia, if , ϑm)

∂if

▶ Torque

τm =
∂W ′

m(ia, if , ϑm)

∂ϑm

ia

dψa

dt
Lossless

magnetic field
τm

ψa = ψa(ia, if , ϑm)

τm = τm(ia, if , ϑm)

dϑm
dt

if

dψf

dt

ψf = ψf(ia, if , ϑm)

32 / 38



Analytical Example
▶ Assume a magnetically linear machine with the flux linkages

ψa = La(ϑm)ia + Laf(ϑm)if

ψf = Laf(ϑm)ia + Lfif

where the inductances are

La(ϑm) = L0 + L2 cos(2ϑm) Laf(ϑm) =M cos(ϑm)

▶ Coenergy

W ′
m(ia, if , ϑm) =

1

2
[L0 + L2 cos(2ϑm)] i

2
a +M cos(ϑm)iaif +

1

2
Lfi

2
f

▶ Torque
τm = −M sin(ϑm)iaif − L2 sin(2ϑm)i

2
a

33 / 38



Torque

ϑm

τm

Reluctance

π−π 0

torque

interaction
torque

Mutual

Total
torque

Currents ia and if are constant

τm

ϑm

0
π

ia

Field current if is constant
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Inclusion of Voltage Equations

ia

dψa

dt
Lossless

magnetic field
τm

Ra

ua

ia = ia(ψa, ψf , ϑm)

τm = τm(ψa, ψf , ϑm)

dϑm
dt

dψf

dt

if = if(ψa, ψf , ϑm)

Mechanical
subsystemifRf

uf
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Voltage Equations: Flux Linkages as State Variables

▶ Voltage equations

dψa

dt
= ua −Raia

dψf

dt
= uf −Rfif

where the currents are known static functions of the state variables

ia = ia(ψa, ψf , ϑm) if = if(ψa, ψf , ϑm)

▶ Electromagnetic torque is the input for the mechanical subsystem

τm = τm(ψa, ψf , ϑm)

and the state variable ϑm is the output of the mechanical subsystem
▶ This set of equations is very simple to implement

The expression τm = τm(ia, if , ϑm) could be used as well since the currents ia = ia(ψa, ψf , ϑm) and if = if (ψa, ψf , ϑm) are known.
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Voltage Equations: Currents as State Variables

▶ If the currents are used the state variables, the representation of the voltage
equations becomes complex, for example

dψa

dt
=
∂ψa

∂ia

dia
dt

+
∂ψa

∂if

dif
dt

+
∂ψa

∂ϑm

dϑm
dt

= ua −Raia

▶ In general case, all the partial derivatives are functions of ia, if , and ϑm
▶ In the magnetically linear example case

La(ϑm)
dia
dt

+ Laf(ϑm)
dif
dt

+

[
∂La(ϑm)

∂ϑm
ia +

∂Laf(ϑm)

∂ϑm
if

]
dϑm
dt

= ua −Raia

and similarly for the rotor voltage equation
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