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Single-Phase Machines

» Single-phase machines are seldom used in real applications

» Why should we study them?
» To get more thorough understanding of fundamental concepts

» Flux linkages

» Conservative magnetic field systems

» Selection of state variables

» Modeling concepts introduced are very general and powerful

» 2-pole single-phase machine with a field winding is used as an example

3-phase machines will be considered in the next lecture. They are actually simpler to model, so don’t worry!
2/38



Single-Phase Machine With a Field Winding
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Single-Phase Machine With a Field Winding

» Stator voltage

dia
dt

U, = Riy +
» Stator flux linkage

¢a = La('ﬂm)ia + Laf(ﬁm)if

where L, is the self-inductance and
L, is the mutual inductance

» How to model the inductances?
» How to calculate the produced torque?

For constant field-winding current i¢, the flux linkage ¢ (9m) = Laf (¥m )i due to the field winding depends only on the rotor position, just
like in permanent-magnet machines.
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Stator Winding

» Winding function NV, tells how many times the flux links with the winding at
» Magnetomotive force (MMF) distribution

Fo() = Na(9)ia /0
ol
N, 716 (é’ n ‘@)
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Example stator winding with n,, turns’

1SIemon, Electric Machines and Drives. Addison Wesley, 1992.
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Rotor Field Winding

» Field winding produces the flux density distribution B; in the airgap
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Example geometry with o = 7/2
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Full-Pitch Coil
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Flux Density Space Waveforms at v, = 0
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Total airgap flux density B, = B, + Bt

Waveforms assume gmax = 490
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Flux Density Space Waveforms at v, = —7/2
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Total airgap flux density B, = B, + Bs Waveforms assume gmax = 490
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Flux Linkage and Inductances

» Total airgap flux density

» Stator flux linkage

27
VYo =1t Na(0)Bg(9)dd
0

where 7 is the airgap radius and / is the effective rotor length
» Inductances?

2 N2(9) 2 N, (9) Ny ()
L., = M/ a dd Ly = M/ =7~ 7dY
S ) S )

2Lipo, Analysis of Synchronous Machines, 2nd. CRC Press, 2012.
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Inductances

» Stator flux linkage

¢a = La(ﬂm)ia + Laf(ﬁm)if
La d
" " " ; dt
Laf ﬁm
N S 21 U
w@r

The self-inductance L, of the ideal full-pitch coil is constant, independent of the rotor position ¥, . If the effect of the stator slots on the airgap
function were taken into account, L, would depend on 9.y, (but not much).
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Voltage Induced by the Field Winding

» Stator voltage can be expressed as

dia, . dLa(VYm)

Uy — Rla + La('ﬁm)g + ZaT

Wm + €,

» Voltage induced by the field winding e,
 dLat (V) . dLag(Vm)

€n = if =i Wm

dt ddm

where constant i; is assumed

N . 7
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Simple Distributed Winding
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Flux Density Space Waveforms at v, = 0

/2
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Flux Density Space Waveforms at v,
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Inductances

+ Laf (ﬁm)if

Um)ia

a(

d}a:L

\i

dipa
dt
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Voltage Induced by the Field Winding
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Ideally Distributed Winding
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Flux Density Space Waveforms at v, = 0
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Ideal sinusoidal winding distribution

It is worth noticing that only the fundamental space component of flux density produces a net flux linkage in the sinusoidally distributed stator

winding. This fact can be realized based on the flux linkage expression given earlier.
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Flux Density Space Waveforms at v, = —7/2
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Inductances

Ya = La(Um)ia + Lag(Um)is = [Lo + Lo cos(20m)]ia + M cos(Vm )it

L, )

™S\ TN\ 1L
N N I

U dps

Laf 5 dt
\ / M
T 27 U

\ ]

It can be noticed that the sinusoidal distribution of the winding increases the variation of the self-inductance L. The induced voltage e, is not
shown, but, naturally, it becomes sinusoidal as well.
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Lossless Magnetic Field
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Lossless Magnetic Field

Understanding lossless magnetic field systems often helps in developing machine
models for control purposes

>

vVvyyvyVvyyy

Very general and powerful concept

Only assumption is that the magnetic field is lossless (conservative)

Forces and torques in complex electromechanical systems can be determined
Independent of machine type, number of terminals, number of poles, etc.
Most lumped-parameter electric machine models are based on it

Magnetic saturation and spatial harmonics can be taken into account

Core losses can be modeled outside the lossless field system
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Lossless Magnetic Field®#

Stored magnetic field energy Wy,

» is a state function, depending only on its
independent state variables

» is independent of the path used to reach
the state

» can be determined completely if the
electrical port relations are known

» can be evaluated by means of numerical
techniques (e.g. FEM) or measurements

3Woodson and Melcher, Electromechanical Dynamics. John Wiley & Sons, 1968.
4Fitzgerald, Kingsley, and Umans, Electric Machinery. McGraw-Hill, 2003.

Lossless
magnetic
field

ldxl

ld{bM
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Example System: Single-Phase Machine With Field Winding

» Two electrical ports and one
mechanical port

» Stored field energy

Wm = Wm(way be, 19111)

where ., ¥¢, and ¢, are
independent state variables

» This example system is
considered in the following

dpa
dt

Rotor

magnetic
axis

Stator
magnetic
axis
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» Power balance

AWy by dvs_ ddy,
a e e ™

» Currents

i = an(waad)ﬁﬂm)
v a
i = 8Wm<waa¢faﬁm)
T Oy

» Torque

. 8Wm(1/)aa ¢f, ﬂm)
0V

Tm —

dpa
dt

i
de

ia

Lossless
magnetic field

ia = ia("/Jaa ’(/)fa ng)

7:f - if(waawﬁﬁm)
Tm = Tm(¢a,¢f7§m)

Tm

dvn,
dt

26/38



Lossless Field System Should Satisfy Reciprocity Conditions

» Incremental mutual inductances should be equal in any operating point
Oip iy
87/Jf 3%

» If multiple mechanical ports, analogous conditions hold for them as well

» Conditions between electrical and mechanical ports

Oia aTm 821" aTm

O Ota MmO
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Integration Path for the Field Energy Can Be Chosen Freely

» For illustration purposes
r = 0 assumed

» Integration along Path 1

Wm(dﬁ, 19111)

Pa
- /0 i (i, 0) e

Ym
- / Tm(wayﬂm)dﬁm
0

» We should know 7, (¢, ¥ )

Path 2a

Tm =0

Path 2b
ia = Za(wav ﬂm)

Win (Y, V)

Path 1b
Tm = Tm (/(/)aw ﬁm)

Path 1a
ia = ia(z/]av 0)

Va
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» Integration along Path 2

Ya
Wm(waa r&lm) = /0 ia(iﬁa, ﬁm)dwa

since 71, (0,9m) =0
» Torque is not needed in Path 2

Path 2a
Tm =0

Path 2b
ia = ia(waa ﬂm)

-

m(waa ﬁm)

Path 1b
Tm = Tm (d’a, ﬁm)

Path 1a
ia = ia(way O)

Va
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lllustration of Field Energy and Coenergy

» For illustration purposes
1y = 0 assumed

» Area of the rectangle ¢,i.
» Relation of coenergy to field energy

Wm + Wr/n = waia

» Magnetically linear case: Wy, = W/,

Ya

I/Vm =

/

Pa ‘
/0 Zad'l/)a wa = /‘Z)a(iaa 79m)

/
Energy

ia
Wi [ udiy
0

Coenergy

la
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Field Energy and Coenergy
» Field energy
wa . wf
Wm(waawfaﬁm) = /0 Za(waawfaﬁm)d@/)a + /0 if(oawfaﬁm)d¢f
» Coenergy
W (Za,Zf, / wa Za7Zf7 dla +/ ’(/Jf O va )dlf
» Relation of coenergy to field energy

Wi + Wi = Vaia + Ui

» Torque is typically easier to calculate from coenergy
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Torque from Coenergy

» Power balance

dW’ dﬁm

= wa wf m= gy

» Flux linkages

OW} (iayif, )

Va = Din
s = OW! (ia,if, )
b= i
» Torque

OW, (i, i, Orm)
Tm = 00

ia

dys,
dt

dyx
dt

Lossless

magnetic field

wa = wa(iaa ifa Q9110)

(o

= Z/}f(iay ifa ﬂm)

Tm = Tm(im ifv ﬁm)

Tm

dvn,

dt
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Analytical Example
» Assume a magnetically linear machine with the flux linkages
Ya = La(¥m)ia + Lag(Vm)is
Yt = Lag(Um)ia + Ly
where the inductances are
Ly(Ym) = Lo + Lo cos(20m) Lot (Vm) = M cos(Vr,)

» Coenergy

1

L 2

W (ia,ig, D) 5 Lo + Ly cos(20,)] 2 + M cos(On )iais + = Lyi?

» Torque
Tm = —M sin(Op, )iais — Lo sin(20,,)i2
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Torque

Tm

Total
torque

Reluctance
torque

_W 0

\ Mutual
interaction
torque

Currents i, and ¢ are constant

Field current ¢ is constant
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Voltage Equations
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Inclusion of Voltage Equations

Lossless
magnetic field

ia — ia(waa 7/1f7 19m)

if = if(¢aa wfﬂ?m)
Tm = Tm(wavdjfvﬂm)

Tm

dvn,
dt

Mechanical
subsystem
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Voltage Equations: Flux Linkages as State Variables

» Voltage equations

dypa . dyjy

T Raia P Ryig

where the currents are known static functions of the state variables
ia = Ga(Ya, ¥r, Um) it = it (Ya, ¥r, Um)
» Electromagnetic torque is the input for the mechanical subsystem
T = Tm (Ya, Y, Im)

and the state variable ¥, is the output of the mechanical subsystem
» This set of equations is very simple to implement

The expression 7, = Tm (%a, if, ¥m ) could be used as well since the currents i = ia(¥a, ¥¢, 9m) and ig = ig(YPa, ¢, 9m) are known.
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Voltage Equations: Currents as State Variables

» |f the currents are used the state variables, the representation of the voltage
equations becomes complex, for example

A _ Oadia | Ondis , O iy _

= Uy — Rala

dt i, dt = Oig dt * OV dt
» In general case, all the partial derivatives are functions of i,, ¢, and ¥,
» In the magnetically linear example case

dia dit | [0La(Vm), , OLar(Vm), | Vi

La(Wm) g + Lar(Um) - . 2t oo M| @

= Uy — Rata

and similarly for the rotor voltage equation
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