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Schedule

Lectures:
Mondays 10-12, Jeti
and
Wednesday 10-12, Jeti

Exercises:
2 times a week, see schedule on course homepage.
Session 1: Exploratory problems and Additional problems.
Session 2: Additional problems and Homework problems.
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Grading

Alternative 1 (recommended):

Final exam (60%): Written exam Wednesday 23.10., 16:30-19:30.
Homework (40%): Reported under Assignments on
mycourses.aalto.fi. Problems presented on mycourses.aalto.fi the
previous friday.

Alternative 2: Re-exam in December or May (100%)
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Literature

James Stewart, Calculus: Early transcendentals, 7th edition.

David Guichard and friends, Single variable calculus: Early
transcendentals.

PDF (Entire book):
https://www.whitman.edu/mathematics/calculus/calculus.pdf
HTML and Chapter-by chapter:
https://www.whitman.edu/mathematics/calculus/

Slides Updated on mycourses.aalto.fi after every lecture.
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Course content

Sequences and series (week 1)

Sequences and their limits
Series and convergence tests

Derivatives (week 2-3)

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Integrals (week 4-5)

Integrals and the fundamental theorem of calculus
Partial fractions and integration by parts
Unbounded integrals and applications

Differential equations (week 5-6)

First order differential equations - linear and separable
Second order differential equations - homogeneous and
inhomogeneous
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Number classes

Natural numbers N = {1, 2, 3, . . . }
N0 = N ∪ {0} = {0, 1, 2, 3, . . . }
Integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }
Rationals Q = { pq : p ∈ Z, q ∈ N}
Real numbers R.

Can be thought of as infinite decimal expansions.
Constructed (for example) via Cauchy sequences of rationals.
Contains all rationals, and (many) other numbers, like

√
p, π, e...

In fact, “most” real numbers are not rational.
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Supremum axiom

Axiom

Every non-empty set of real numbers that has an upper bound, also has a
least upper bound in R.

For example, the set
S = {3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, . . . } has a least
upper bound in R, namely π.

In contrast, S has no least upper bound in Q, because for any
rational approximation p

q < π of π, there is another rational

approximation p′

q′ < π that is better (“include more decimals”).
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Supremum axiom

Axiom

Every non-empty set of real numbers that has an upper bound, also has a
least upper bound in R.

The least upper bound is called supremum, and may or may not be
contained in the set.

For example, the sets

T = {x ∈ R : x2 < 2} and T ′ = {x ∈ R : x2 ≤ 2}

have the same supremum,

sup(T ) = sup(T ′) =
√

2,

but
√

2 ∈ T ′,
√

2 6∈ T .
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Supremum axiom

Axiom

Every non-empty set of real numbers that has an upper bound, also has a
least upper bound in R.

Axiom

Every non-empty set of real numbers that has a lower bound, also has a
largest lower bound in R.

Proof on the blackboard.

This is called the infimum of the set.

For example, the set
S = {4, 3.2, 3.15, 3.142, 3.1416, 3.14160, 3.141593, . . . } has a largest
lower bound in R, namely π.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Sequences and their limits
Series and convergence tests

Number sequences

A number sequence is an infinite sequence of numbers

(an)n∈N = (an)∞1 = (a1, a2, a3, . . . ).

A number sequence can also be thought of as a function f : N→ R,
where an = f (n).

(1, 2, 3, 4, . . . ): an = n.
(1, 2, 4, 8, . . . ): an = 2n−1.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Sequences and their limits
Series and convergence tests

Number sequences

Sometimes a sequence is given recursively or inductively:

Fibonacci sequence (1, 1, 2, 3, 5, 8, . . . ) is defined by

fn = fn−1 + fn−2 (for n ≥ 3).

Then we also need starting values f1 = f2 = 1.
In fact, fn can also be written in closed form as

fn =
1√
5

(φn − (−1)n

φn
),

where φ = 1+
√
5

2
is the golden ratio. Proving this is beyond the scope

of this course.
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Induction proofs

A proof technique that is very useful for number sequences (but also
in many other parts of mathematics)

Goal: Prove a statement P(n) for all natural numbers n ∈ N.

Technique:

First (base case) prove the first case P(1) (or sometimes P(0)).
Then (induction step) prove that, for an arbitrary m ∈ N,
IF P(m) holds, THEN P(m + 1) also holds.
These two steps together prove that the statement P(n) holds for
any n ∈ N.

P(1)⇒ P(2)⇒ P(3)⇒ P(4)⇒ · · · .
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Induction proofs

Example

Let an be recursively defined by a1 = 1 and an+1 = 2an + 1. Then
an = 2n − 1 for all n ∈ N.

Proof.

Base case: a1 = 1 = 21 − 1, so the statement is true for n = 1.

Induction step: Assume (induction hypothesis) that am = 2m − 1.
Then

am+1
def
= 2am + 1

IH
= 2 · (2m − 1) + 1 = 2m+1 − 2 + 1 = 2m+1 − 1,

so the statement is also true for n = m + 1.

It follows that the statement an = 2n − 1 is true for all n ∈ N.
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Induction proofs

Example

Recall that the Fibonacci numbers are defined by f1 = f2 = 1 and
fn = fn−1 + fn−2. For all n ∈ N holds fn < 2n.

Proof.

Base case: f1 = 1 < 2 = 21 and f2 = 1 < 4 = 22.

Induction step: Assume (induction hypothesis) that fm < 2m and
fm−1 < 2m−1 . Then

fm+1
def
= fm + fm−1

IH
< 2m + 2m−1 < 2 · 2m = 2m+1,

so the statement is also true for n = m + 1.

It follows that the statement fn < 2n is true for all n ∈ N.
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Properties of sequences

Definition

A sequence (an)n∈N is called

bounded from above if there is C ∈ R s.t. an < C for all n.

weakly increasing if an ≤ an+1 for all n.

strongly increasing if an < an+1 for all n.

The notions of bounded from below, weakly decreasing and strongly
decreasing are defined analogously (by reversing the inequality signs).
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Limits

We are interested in what happens to a sequence when n gets large.
What is the limit of an?

Definition

We say that (an)n∈N converges to L ∈ R, and write

an −−−→
n→∞

L or lim
n→∞

an = L

if for every ε > 0 there is Nε ∈ N such that

|an − L| < ε whenever n > Nε.

ε should be thought of as a very small number, and Nε as a very big
integer — the smaller ε is, the larger we need to choose Nε.
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Limits

Definition

We say that limn→∞ an = L if for every ε > 0 there is Nε ∈ N such that

|an − L| < ε whenever n > Nε.
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Limits

Definition

We say that limn→∞ an = L if for every ε > 0 there is Nε ∈ N such that

|an − L| < ε whenever n > Nε.

Example

The sequence an = 1
n converges to 0.

Proof: For any ε > 0, let Nε ≥ 1
ε , Then

n > Nε =⇒ |an − 0| = an =
1

n
<

1

Nε
< ε.
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Counting with limits

Theorem

Let an −−−→
n→∞

A and bn −−−→
n→∞

B.

Then (an + bn) −−−→
n→∞

A + B.

Proof.

Fix ε > 0.

Let Ma and Mb be such that n > Ma ⇒ |an − A| < ε
2 , and

n > Mb ⇒ |bn − B| < ε
2 .

Now, if Nε is the largest of Ma and Mb, then

n > Nε ⇒ |(an + bn)− (A + B)| ≤ |an −A|+ |bn −B| < ε

2
+
ε

2
= ε.
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Counting with limits

Theorem

Let (an)n∈N and (bn)n∈N be sequences with

an −−−→
n→∞

A and bn −−−→
n→∞

B.

Then:

−an −−−→
n→∞

−A.

(an + bn) −−−→
n→∞

A + B.

(anbn) −−−→
n→∞

AB.

If B 6= 0, then an
bn
−−−→
n→∞

A
B .

We just proved the second part of this theorem. The other three parts
are proved similarly.
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Counting with limits

Example

lim
n→∞

n2 − n

3n2 + 1
= lim

n→∞

n2(1− 1
n )

n2(3 + 1
n2 )

=
lim(1− 1

n )

lim(3 + 1
n2 )

=
1

3
.
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Counting with limits

Example

lim
n→∞

√
n2 + n − n = lim

n→∞

(
√
n2 + n − n)(

√
n2 + n + n)√

n2 + n + n

= lim
n→∞

(n2 + n)− n2√
n2 + n + n

= lim
n→∞

n

n(
√

1 + 1
n + 1)

=
1

lim(
√

1 + 1
n + 1)

=
1

2
.
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Counting with limits

Theorem (‘Squeeze theorem”, or “Lemma of the two policemen”)

Let (an)n∈N, (bn)n∈N and (cn)n∈N be sequences with an ≤ bn ≤ cn for
every n and

lim
n→∞

an = lim
n→∞

cn = L.

Then
lim

n→∞
bn = L.
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Counting with limits

Example

We want to compute

lim
n→∞

sin n

n
.

Note that −1n ≤
sin n
n ≤

1
n .

But −1n ↗ 0↙ 1
n .

Thus, by the policemen’s lemma, sin n
n → 0.
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Limits

Not all sequences converge.

The sequence (1, 2, 3, 4, . . . ), given by an = n, diverges.

We can also write
lim

n→∞
n =∞.

We say that
lim

n→∞
an =∞.

if for every M > 0, there exists N > 0 such that n > N ⇒ an > M.

The sequence (−1, 1,−1, 1, . . . ), given by an = (−1)n, diverges, and
does not tend to infinity.
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Limits

Theorem

Let (an)n∈N be a weakly increasing sequence.

If an is upper bounded, then an converges to some L = lim an ∈ R.

If an is not upper bounded, then an →∞.

In the first case, the limit is the least upper bound of the set
{an : n ∈ N}. This exists by the supremum axiom.

For example, n−1
n ≤

n
n+1 ≤ 1, so the sequence

(
n

n+1

)
n∈N

is upper

bounded and increasing. Thus it has a limit.

Indeed,

lim
n→∞

n

n + 1
= 1
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Limits

Even when we know that a sequence converges, it can be difficult to
compute its limit.

Consider the sequence en = (1 + 1
n )n.

e1 = 2

e2 = 9/4 = 2.25

e3 = 64/27 ≈ 2.37

e4 = 625/256 ≈ 2.44

One can show that en−1 < en < 3 for all n.

So by the theorem about monotone bounded sequences, en
converges to some number

e = lim
n→∞

en ≈ 2.71828.

This is the natural base e, which will appear very often in this course.
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Speed table

1� log n� nα � en � n!� nn for any α > 0.

By this we mean that the ratios 1
log n , log n

nα , nα

en , en

n! , and n!
nn , all tend

to zero.

Proof: exercise. (or blackboard if time)
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Series

A series is an “infinite sum”, like

∞∑
i=1

1 = 1 + 1 + 1 + 1 + · · ·

∞∑
i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

∞∑
i=0

1

2i
= 1 +

1

2
+

1

4
+

1

8
+ · · ·

These have a precise meaning via sequences.
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Partial sums

If (an)n∈N is a number sequence, consider its partial sums

sn =
n∑

i=1

ai .

If the sequence (sn)n∈N has a limit, then we say that
∑∞

i=1 ai is
convergent, and write

∞∑
i=1

ai = lim
n→∞

sn.

Example

If (an)n∈N = (1, 1, 1, . . . ), then the sequence of partial sums is
(sn)n∈N = (1, 2, 3, . . . ). Not convergent.
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Partial sums

Example

If (an)n∈N0 = (1, 12 ,
1
4 ,

1
8 , . . . ), then (sn)n∈N = (1, 32 ,

7
4 , . . . ).

Claim: For n ∈ N0 holds

sn =
n∑

i=0

1

2i
= 2− 1

2n
.

Proof: By induction. (blackboard)

Since sn = 2− 1
2n → 2, we get

∞∑
n=0

1

2n
=
∞∑
n=0

an = lim
n→∞

sn = lim
n→∞

2− 1

2n
= 2.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Sequences and their limits
Series and convergence tests

Partial sums

Example

If (an)n∈N0 = (1, 12 ,
1
4 ,

1
8 , . . . ), then (sn)n∈N = (1, 32 ,

7
4 , . . . ).

Claim: For n ∈ N0 holds

sn =
n∑

i=0

1

2i
= 2− 1

2n
.

Proof: By induction. (blackboard)

Since sn = 2− 1
2n → 2, we get

∞∑
n=0

1

2n
=
∞∑
n=0

an = lim
n→∞

sn = lim
n→∞

2− 1

2n
= 2.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Sequences and their limits
Series and convergence tests

Arithmetic sums

1 + 2 + · · · + (n − 1) + n

n + (n − 1) + · · · + 2 + 1

(n + 1) (n + 1) · · · (n + 1) (n + 1)

This shows that 2
∑n

i=1 i = n(n + 1), so

n∑
i=1

i =
n(n + 1)

2
.

This can also be proven by induction. Exercise.
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Arithmetic sums

An arithmetic progression (a, a + b, a + 2b, . . . , a + nb) has n + 1
terms, first value a, and common difference b.

Its sum is

n∑
i=0

a + bi = (n + 1)a + b
n∑

i=0

i

= (n + 1)a + b
n(n + 1)

2

= (n + 1)

(
a +

nb

2

)
.

Intuition: The number of terms times the average term.
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Geometric sums

Let r be an arbitrary real number. Then

(1 + r + r2 + · · ·+ rn)(1− r)

= (1− r) + (r − r2) + (r2 − r3) + · · ·+ (rn − rn+1)

= 1− rn+1.

Thus, if 1− r 6= 0, we have

n∑
i=0

r i = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
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Geometric sums

A geometric progression (a, ar , ar2, . . . , arn) has n + 1 terms, first
value a, and common ratio r .

For example, it represents the size of a population of fixed growth
rate, or the value of a bank account with fixed interest rate, after
0, 1, . . . , n years.

Its sum (if r 6= 1) is

n∑
i=0

ar i = a
n∑

i=0

r i

=
a(1− rn+1)

1− r
.
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Geometric series

Example

1 +
3

4
+

9

16
+ · · ·+ 3n

4n
=

n∑
i=0

3i

4i
=

1− 3
4

n+1

1− 3
4

−−−→
n→∞

1

1− 3
4

= 4,

so
∞∑
i=0

3i

4i
= 4
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Geometric series

Example

1 +
4

3
+

16

9
+ · · ·+ 4n

3n
=

n∑
i=0

4i

3i
=

1− 4
3

n+1

1− 4
3

−−−→
n→∞

∞,

so
∞∑
i=0

4i

3i
=∞.
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Geometric series

Theorem

The geometric series

a + ar + ar2 + · · · = a
∞∑
i=0

r i

is

Divergent if |r | ≥ 1.

Convergent, and equal to a
1−r , if −1 < r < 1
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Criteria for convergence

Theorem

If
∑∞

i=0 ai is convergent, then limn→∞ an = 0.

Conversely, if an 6→ 0, then
∑∞

i=0 ai is not convergent.

This does not mean that all sequences with an → 0 have a
convergent sum.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Sequences and their limits
Series and convergence tests

Criteria for convergence

Example∑
n−1
n not convergent.∑

sin n not convergent.
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Series of powers

n∑
i=1

1√
i

=
1√
1

+
1√
2

+ · · ·+ 1√
n

≥ 1√
n

+
1√
n

+ · · ·+ 1√
n

=
n√
n

=
√
n −−−→

n→∞
∞,

so the series
1√
1

+
1√
2

+
1√
3

+ · · · =
∞∑
i=1

1√
i

=∞

is divergent.
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Series of powers

Let 0 < α < 1. Then

n∑
i=1

1

iα
=

1

1α
+

1

2α
+ · · ·+ 1

nα

≥ 1

nα
+

1

nα
+ · · ·+ 1

nα

=
n

nα
= n1−α −−−→

n→∞
∞,

so the series
1

1α
+

1

2α
+

1

3α
+ · · · =

n∑
i=1

1

iα
=∞

is divergent.
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Comparison criterion

Theorem

Let
∑∞

i=1 bi be a convergent series of positive terms, and let (an)n∈N be
a sequence such that for some M > 0, 0 ≤ ak ≤ Mbk for every k. Then∑∞

i=1 ai is convergent, with

∞∑
i=1

ai ≤ M
∞∑
i=1

bi .
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Comparison criterion

Theorem

If 0 ≤ ak ≤ Mbk for every k , then
∑∞

i=1 ai ≤ M
∑∞

i=1 bi .

Proof.

The inequality

sn =
n∑

i=1

ai ≤ M
n∑

i=1

bi ≤ M
∞∑
i=1

bi

holds for every partial sum. So (sn)n∈N is an increasing and bounded
sequence, so it has a limit

∑∞
i=1 ai = limn→∞ sn that is at most the

upper bound M
∑∞

i=1 bi .
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Series of powers

n∑
i=1

1

i2
=

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

≤ 1 +
1

2 · 1
+

1

3 · 2
+ · · ·+ 1

n(n − 1)

= 1 + (
1

1
− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n − 1
− 1

n
)

= 1 +
1

1
− 1

n
−−−→
n→∞

2.

So
∞∑
i=1

1

i2
≤ 2,

and in particular
∑∞

i=1
1
i2 is convergent.
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Series of powers

∞∑
i=1

1

i2
≤ 2,

and in particular
∑∞

i=1
1
i2 is convergent.

In fact,
∞∑
i=1

1

i2
=
π2

6
≈ 1.6449,

but this is MUCH harder to prove.

Shown by Euler in 1734, after the problem had been asked by
Mengoli in 1644.

Really beautiful geometric explanation:
www.youtube.com/watch?v=d-o3eB9sfls
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Series of powers

Theorem

The sequence
n∑

i=1

1

iα

is

Divergent if 0 ≤ α ≤ 1

Convergent if 1 < α

We have already shown the cases 0 ≤ α ≤ 1 and α = 2.

The cases α > 2 follows from the comparison criterion, as then
1
iα ≤

1
i2 for every i .

The cases 1 < α < 2 will be treated later in the course.
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Limit criterion

Theorem

If
∑∞

n=1 bn is convergent and

lim
n→∞

an
bn

<∞,

then
∑∞

n=1 an is also convergent.

Conversely, if
∑∞

n=1 bn =∞ and

lim
n→∞

an
bn

> 0,

then
∑∞

n=1 an is also divergent.

Both these statements are immediate consequences of the
comparison criterion.
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Limit criterion

Example

Is
∑

1√
n2+2n

convergent or divergent?

√
n2 + 2n = n

√
1 + 2

n .

1/
√
n2 + 2n

1/n
=

1√
1 + 2

n

−−−→
n→∞

1 > 0.

As
∑

1
n is divergent, so is

∑
1√

n2+2n
.
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Quotient criterion

Assume the ratios an+1

an
between the terms has a limit

ρ = lim
n→∞

an+1

an
.

If ρ > 1, then the terms do not converge to zero (in fact, they
diverge), so the series

∑
an =∞ is divergent.
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Quotient criterion

Assume the ratios an+1

an
between the terms has a limit

ρ = lim
n→∞

an+1

an
.

If ρ < 1, then the inequality an < aNε(ρ+ ε)n holds for every term
an where n > Nε, if 0 < ε < 1− ρ. (Proof: exercise)

Then

∞∑
n=1

an <
Nε∑
i=1

ai + aNε

∞∑
n=Nε+1

(ρ+ ε)n =
Nε∑
i=1

ai +
aNε

1− ρ− ε
<∞,

so
∑∞

n=1 an is convergent.
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Quotient criterion

Assume the ratios an+1

an
between the terms has a limit

ρ = lim
n→∞

an+1

an
.

If ρ = 1, then the series
∑

an can either be convergent or divergent.

Example

If an = 1/
√
n, then an+1

an
=

√
n√

n+1
−−−→
n→∞

1, and

∞∑
n=1

1√
n

is divergent.
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Quotient criterion

Assume the ratios an+1

an
between the terms has a limit

ρ = lim
n→∞

an+1

an
.

If ρ = 1, then the series
∑

an can either be convergent or divergent.

Example

If an = 1/n2, then an+1

an
= n2

(n+1)2 −−−→n→∞
1, and

∞∑
n=1

1

n2

is convergent.
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Quotient criterion

Theorem

If limn→∞
an+1

an
< 1, then

∑∞
n=1 an is convergent.

If limn→∞
an+1

an
> 1, then

∑∞
n=1 an is divergent.
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Quotient criterion

Example

Is
∑∞

n=1
2n

n! convergent or divergent?

Let an = 2n

n! . Then

an+1

an
=

2n+1

(n+1)!

2n

n!

=
2

n + 1
−−−→
n→∞

0.

By the quotient criterion
∑∞

n=1
2n

n! is convergent.
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Functions

A function f : D → E is a rule that assigns, for each element x ∈ D,
a unique element f (x) ∈ E .

D is the domain of the function, and E is the codomain.
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Functions

A function is often represented by its graph, especially when the
domain and codomain are both (subsets of) R.
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Functions

The range f (D) of the function is the set {f (x) : x ∈ D}.

The range is a subset of E , but not necessarily all of E .
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Intervals

If a and b are real numbers, a ≤ b, then

[a, b] = {x ∈ R : a ≤ x ≤ b} is a closed interval.

(a, b) = {x ∈ R : a < x < b} is an open interval.

[a, b) = {x ∈ R : a ≤ x < b} and (a, b] = {x ∈ R : a < x ≤ b} are
half-open intervals.
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Intervals

We also consider infinite and half-infinite intervals

[a,∞) = {x ∈ R : a ≤ x}.
(a,∞) = {x ∈ R : a < x}.
(∞, a] = {x ∈ R : x ≤ a}.
(∞, a) = {x ∈ R : x < a}.
(−∞,∞) = R.
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Functions

The domain and codomain are usually R, or intervals in R.

If no domain is specified, we assume that the function is defined for
every value where its formula “makes sense”.

Example

The function f (x) = x2 has domain R and range [0,∞).
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Functions

The domain and codomain are usually R, or intervals in R.
If no domain is specified, we assume that the function is defined for
every value where its formula “makes sense”.

Example

The function f (x) = 1
x has domain and range Rr {0}.
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Functions

The domain and codomain are usually R, or intervals in R.

If no domain is specified, we assume that the function is defined for
every value where its formula “makes sense”.

Example

The function f (x) =
√
x has domain and range [0,∞).
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Functions

The domain and codomain are usually R, or intervals in R.

If no domain is specified, we assume that the function is defined for
every value where its formula “makes sense”.

Example

The function f (x) = sin x has domain R and range [−1, 1].
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Functions

The domain and codomain are usually R, or intervals in R.

If no domain is specified, we assume that the function is defined for
every value where its formula “makes sense”.

Example

f (x) = arcsin x has domain [−1, 1] and range [−π2 ,
π
2 ].
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Composition of functions

Two functions f : A→ B and g : B → C can be composed into a
function g ◦ f : A→ C , g ◦ f (x) = g(f (x)).

Sometimes it is easier to analyse one complicated function as a
composition of two easier ones.

Example

The function h(x) = 2x2+1 can be written as g ◦ f , where g(y) = 2y

and f (x) = x2 + 1.
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Composition of functions

Example

The function h(x) = 2x2+1 can be written as g ◦ f , where g(y) = 2y

and f (x) = x2 + 1.

x
f7−→ x2 + 1

g7−→ 2x2+1.

This is not the same as the composition f ◦ g :

x
g7−→ 2x g7−→ (2x)2 + 1 = 4x + 1.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Limits of functions

The function f (x) = sin x
x is only defined for x 6= 0.

Still, it seems to tend to a limit, marked by the blue dot.
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Limits of functions

Definition

We say that a function f converges to L ∈ R as x → a, and write

f (x) −−−→
x→a

L or lim
x→a

f (x) = L

if for every ε > 0 there is δ = δε such that

|f (x)− L| < ε whenever |x − a| < δ.

Note that this definition does not require that f is defined in a, but
only that f is defined in some points arbitrarily close to a.
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Limits of functions

Definition

lim
x→a

f (x) = L

means that for every ε > 0 there is δ = δε such that

|x − a| < δ =⇒ |f (x)− L| < ε.

Example

lim
x→0

√
x = 0,

because for any ε > 0, we can choose δ = ε2, and get

|x − 0| < δ = ε2 =⇒ |
√
x − 0| < ε.
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Continuity

Example

lim
x→1

x2 − 1

x − 1
= lim

x→1

(x − 1)(x + 1)

x − 1
= lim

x→1
x + 1 = 2.
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Limits of functions

Theorem

Let limx→a f (x) = L and limx→a g(x) = M. Then

limx→a−f (x) = −L.

limx→a f (x) + g(x) = L + M.

limx→a f (x) · g(x) = LM.

If M 6= 0, then limx→a
f (x)
g(x) = L

M .
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Continuity

A function is continuous if “you can draw its graph without lifting
your pen from the paper”.

This can be made precise using limits.

Definition

A function f is continuous in a if

f (a) = lim
x→a

f (x).

f is continuous if it is continuous in all points in its domain.
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Continuity

Theorem

f (x) = xα is continuous (except in 0 if α < 0.)

sin x is continuous.

Corollary

If f and g are polynomials, then the rational function f
g is

continuous in the points where g(x) 6= 0.
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Continuity

Example

The function sin x
x is continuous in Rr {0}.

It can be extended to a continuous function on all of R, by letting

f (x) =

{
sin x
x if x 6= 0

1 if x = 0
.
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Counting with limits

Theorem (‘Squeeze theorem”, or “Lemma of the two policemen”)

Let f , g and h be functions defined on the same domain D, with
f (x) ≤ g(x) ≤ h(x) for every x ∈ D and

lim
x→a

f (x) = lim
x→a

h(x) = L.

Then
lim
x→a

g(x) = L.
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Standard limits

Dividing by sin x we get 1 < x
sin x <

1
cos x −−−→x→0

1.

Squeeze lemma yields limx→0
x

sin x = 1.
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Standard limits

limx→0
ln(x+1)

x = 1. (later)

limx→0 x
x = 1.

Note: limx→0 x
0 = 1 but limx→0 0x = 0.

We usually define 00 = 1, but this is only a convention.

limx→0(1 + x)
1
x = e. (definition of e).
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Continuity

Example

The function x3+x2−x
x2−1 is continuous in Rr {−1, 1}.

It can not be extended to a continuous function on all of R, because
it has no limit as x → −1 and when x → 1.
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One-sided limits

Definition

We say that a function f converges to L ∈ R as x → a from the right,
and write

f (x) −−−−→
x→a+

L or lim
x→a+

f (x) = L

if for every ε > 0 there is δ = δε such that

|f (x)− L| < ε whenever 0 < x − a < δ.

Convergence from the left, limx→a− f (x), is defined analogously.
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Improper limits

Definition

We say that a function f converges to ∞ as x → a, and write

f (x) −−−→
x→a

∞ or lim
x→a

f (x) =∞

if for every N there is δ = δN such that

f (x) > N whenever |x − a| < δ.

Convergence to −∞ is defined analogously.

We can also easily define one-sided improper limits

lim
x→a+

f (x) = ±∞ and lim
x→a−

f (x) = ±∞.
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Improper limits

Example

The function f (x) = x3+x2−x
x2−1 is continuous in Rr {−1, 1}.

Improper limits:

limx→−1− =∞
limx→−1+ = −∞
limx→1− = −∞
limx→1+ =∞
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Limits of functions

There are “counting rules” for improper limits as well.

Theorem

Let limx→a f (x) = L ∈ R and limx→a g(x) =∞. Then

limx→a−g(x) = −∞.

limx→a f (x) + g(x) =∞.

If L > 0, then limx→a f (x) · g(x) =∞.

limx→a
f (x)
g(x) = 0.

Limits of the form −∞+∞, 0 · ∞ and ∞∞ can not be handled directly
with these rules.
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Limits of functions

Theorem

Let limx→a f (x) = b and assume that g is continuous in b. Then

lim
x→a

(g ◦ f )(x) = lim
x→a

g(f (x)) = g(b).

Proof.

Blackboard

This holds also if a =∞.

It follows that if f : A→ B and g : B → C are continuous, then so
is g ◦ f : A→ C .
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Limits of functions

Example

x 7→ ex is continuous, so

lim
x→0

e
sin x
x = elimx→0

sin x
x = e1 = e.
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Intermediate value theorem

Theorem

Assume f is continuous on [a, b] and f (a) < 0 < f (b). Then there is
c ∈ [a, b] with f (c) = 0.
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Intermediate value theorem

This yields an algorithm to approximate a solution to f (x) = 0, with
an error of at most ε.

If we know f (a) < 0 < f (b), then there is a solution in [a, b].

Check the sign of f ( a+b
2 ).

If f ( a+b
2 ) > 0, repeat the procedure on [a, a+b

2 ].

If f ( a+b
2 ) < 0, repeat the procedure on [ a+b

2 , b].

Repeat the procedure until the endpoints are less than ε apart.
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Intermediate value theorem

Example

Approximate 2
1
3 with an error of at most 0.1.

Want to find solutions to f (x) = x3 − 2 = 0.

f (1) = −1 < 0 < 6 = f (2), so x ∈ [1, 2]. Check f ( 3
2 ).

f ( 3
2 ) = 27

8 − 2 = 11
8 > 0. Check f (

1+ 3
2

2 ) = f ( 5
4 ).

f ( 5
4 ) = 125

64 − 2 = −3
64 < 0. Check f (

5
4+

3
2

2 ) = f ( 11
8 ).
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Intermediate value theorem

Example

Approximate 2
1
3 with an error of at most 0.1.

Want to find solutions to f (x) = x3 − 2 = 0.

f ( 11
8 ) = 1331

512 − 2 = 307
512 > 0. Check f (

5
4+

11
8

2 ) = f ( 21
16 ).

f ( 21
16 ) = 9261

4096 − 2 = 269
4096 > 0.

So f ( 5
4 ) < 0 < f ( 21

16 ).

x ∈ [ 54 ,
21
16 ] and | 2116 −

5
4 | = 1

16 < 0.1.

This is a rather slow algorithm.
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Inverse functions

f : A→ B is one-to-one if for every y ∈ B there is a unique x ∈ A
with f (x) = y .

Strictly increasing functions are one-to-one (if the codomain equals
the range.)

One-to-one functions are also called bijective or invertible.

If f : A→ B is one-to-one, then it has an inverse function
f −1 : B → A such that

f (x) = y ⇐⇒ x = f −1(y).

Warning: Do not mistake the function f −1 for the number
f (x)−1 = 1

f (x) .
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Inverse functions

Example

f (x) = x3 is invertible R→ R.

f −1(y) = y 1/3.

f (x) = x2 is not invertible R→ [0,∞), as f (−x) = f (x).

f (x) = x2 is invertible [0,∞)→ [0,∞).

f −1(y) =
√
y .
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Inverse functions

Example

f (x) = x3 is invertible R→ R.

f −1(y) = y 1/3.

f (x) = x2 is not invertible R→ [0,∞), as f (−x) = f (x).

f (x) = x2 is invertible [0,∞)→ [0,∞).

f −1(y) =
√
y .
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Inverse functions

Example

sin x is not invertible R→ [−1, 1], as sin(x) = sin(x + 2π) and
sin(x) = sin(π − x).

cos x is not invertible R→ [−1, 1], as cos(x) = cos(x + 2π) and
cos(x) = cos(−x).

tan x is not invertible R→ R, as tan(x) = tan(x + π), and since
tan x is not defined when x ∈ {π2 + nπ : n ∈ Z}.
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Inverse functions

Example

sin x is invertible [−π2 ,
π
2 ]→ [−1, 1], with sin−1(x) = arcsin(x).

cos x is invertible [0, π]→ [−1, 1], with cos−1(x) = arccos(x).

tan x is invertible (−π2 ,
π
2 )→ R, with tan−1(x) = arctan(x).
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Inverse functions

Example

The exponential function x 7→ ex is a continuous and increasing
function R→ (0,∞) defined by

ex =


(ep)

1
q if x =

p

q
∈ Q

lim
r→x
r∈Q

er otherwise.

It is one-to-one, with inverse y 7→ ln(y).
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Inverse functions

Theorem

If A is an interval, B ⊆ R, and f : A→ B is one-to-one and continuous,
then the inverse function is also continuous.

Example

The functions ln x , arcsin(x), arccos(x) and arctan(x) are continuous on
their respective domains.
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Limits of functions

Example

x 7→ ln x is continuous, as it is the inverse of y 7→ ey . Thus,

lim
x→0

ln(x + 1)

x
= lim

x→0
ln
(

(x + 1)
1
x

)
= ln

(
lim
x→0

(x + 1)
1
x

)
= ln(e) = 1.
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Derivatives

How quickly does a function grow?

This is measured by the slope between two points on the function
graph.

∆f

∆x
=

f (a + h)− f (x)

h
.

The momentary growth at a ∈ R is measured by

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

If this limit exists, we say that f is differentiable at a.
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Derivatives

In physics, the variable is often denoted by t for time, and the
derivative is the speed at which a dependent variable changes.

Example

If x(t) is the location at time t of a particle that moves along a line, let
v(t) be its velocity and let a(t) be its acceleration. Then x ′(t) = v(t)
and v ′(t) = a(t).
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Derivatives

Notation: f ′(a) = df
dx |x=a = d

dx f (a) = Df (a) = ḟ (a).

The notation ḟ is only used in physics, and only when the
independent variable is time.
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Derivatives

If f : A→ R is differentiable on A, then its derivative Df = f ′ is also
a function A→ R.

If f ′ also happens to be differentiable on A, then we can study the
second derivative,

f ′′ = D2f =
d2f

dx2
,

which measures the rate of change of f ′.
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Derivatives

Example
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Rules of derivation

Sums:

(f + g)′(x) = lim
h→0

f (x + h) + g(x + h)− f (x)− g(x)

h

= lim
h→0

f (x + h)− f (x)

h
+

g(x + h)− g(x)

h

= f ′(x) + g ′(x).

Scalar multiplication: If c ∈ R, then

(cf )′(x) = lim
h→0

cf (x + h)− cf (x)

h

= c lim
h→0

f (x + h)− f (x)

h

= cf ′(x)
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Rules of derivation

Products:

(fg)′(x)

= lim
h→0

f (x + h)g(x + h)− f (x)g(x)

h

= lim
h→0

f (x + h)g(x + h)− f (x + h)g(x) + f (x + h)g(x)− f (x)g(x)

h

= lim
h→0

f (x + h)g(x + h)− f (x + h)g(x)

h
+ lim

h→0

f (x + h)g(x)− f (x)g(x)

h

= lim
h→0

f (x + h)g ′(x) + g(x)f ′(x)

=f (x)g ′(x) + f ′(x)g(x).
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Standard derivatives

f (x) = k constant:

f ′(x) = lim
h→0

k − k

h
= 0.

f (x) = x :

f ′(x) = lim
h→0

(x + h)− x

h
= 1.
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Standard derivatives

f (x) = xp monomial:

Product rule:

d

dx
f (x) =

d

dx
(xp−1 · x)

= x
d

dx
(xp−1) + xp−1

d

dx
x

= x
d

dx
(xp−1) + xp−1

By induction (blackboard)

d

dx
f (x) = pxp−1.
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Rules of derivation

Fractions: (
1

f

)′
(x) = lim

h→0

1
f (x+h) −

1
f (x)

h

= lim
h→0

f (x)− f (x + h)

h

1

f (x)f (x + h)

=
−f ′(x)

f (x)2

It follows that(
f

g

)′
=

f ′

g
+ f

(
1

g

)′
=

f ′

g
− fg ′

g2
=

f ′g − fg ′

g2
.
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Standard derivatives

f (x) = x−p = 1
xp inverse monomial:

Fraction rule:

d

dx

(
1

xp

)
=
− d

dx (xp)

(xp)2

=
−pxp−1

x2p

=
−p
xp+1

= −px−p−1.
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Standard derivatives

d

dx

(
1

xp

)
= −px−p−1.

So the rule d
dx x

α = αxα−1 holds also if α = −p is a negative
integer!

Actually, it holds for any real number α.
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Rules of derivation

Theorem

Let f and g be differentiable functions, and let c be a constant. Then:

(f + g)′(x) = f ′(x) + g ′(x).

(cf )′(x) = cf ′(x).

(fg)′(x) = f ′(x)g(x) + f (x)g ′(x).(
1
g

)′
(x) = −g ′(x)

g(x)2 .
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Standard derivatives

Recall the standard limits sin x
x −−−→x→0

1 and cos x−1
x −−−→

x→0
0.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Standard derivatives

f (x) = sin x :

f ′(x) = lim
h→0

sin(x + h)− sin x

h

= lim
h→0

sin x cos h + cos x sin h − sin x

h

= lim
h→0

sin x(cos h − 1) + cos x sin h

h

= sin x lim
h→0

cos h − 1

h
+ cos x lim

h→0

sin h

h

= cos x .
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Standard derivatives

f (x) = cos x :

f ′(x) = lim
h→0

cos(x + h)− cos x

h

= lim
h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

cos x(cos h − 1)− sin x sin h

h

= cos x lim
h→0

cos h − 1

h
− sin x lim

h→0

sin h

h

= − sin x .
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Standard derivatives

f (x) = tan x = sin x
cos x = sin x 1

cos x :

Product and fraction rule:

f ′(x) = sin x · D
(

1

cos x

)
+

1

cos x
D (sin x)

= sin x
−D(cos x)

(cos x)2
+

1

cos x
D (sin x)

=
(sin x)2

(cos x)2
+

cos x

cos x

=
1− (cos x)2

(cos x)2
+1

=
1

cos(x)2
.
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Standard derivatives

Theorem

f (x) f ′(x)
k 0
xp pxp−1

sin x cos x
cos x − sin x
tan x 1

cos(x)2
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Rules of derivation

Chain rule for compositions:

(g ◦ f )′ (x) = lim
h→0

g(f (x + h))− g(f (x))

h

= lim
h→0

g(f (x + h))− g(f (x))

f (x + h)− f (x)
· f (x + h)− f (x)

h

= lim
h→0

g(f (x + h))− g(f (x))

f (x + h)− f (x)
lim
h→0

f (x + h)− f (x)

h

= g ′(f (x))f ′(x).

If f (x + h)− f (x) = 0 for all h close to 0, then we need to modify
the proof, but the identity still holds.
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Rules of derivation

Example

Compute the derivative of f (x) = sin(x2) in x =
√
π.

Write f (x) = g ◦ h(x), where h(x) = x2 and g(y) = sin y .

h′(x) = 2x and g ′(y) = cos(y).

Thus,
f ′(x) = g ′(h(x)) · h′(x) = cos(x2) · 2x .

When x =
√
π, we get

f ′(
√
π) = cos(π) · 2

√
π = −2

√
π.
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Rules of derivation

Example

Compute the derivative of f (x) = sin(x2) in x =
√
π.

Write f (x) = g ◦ h(x), where h(x) = x2 and g(y) = sin y .

h′(x) = 2x and g ′(y) = cos(y).

Thus,
f ′(x) = g ′(h(x)) · h′(x) = cos(x2) · 2x .

When x =
√
π, we get

f ′(
√
π) = cos(π) · 2

√
π = −2

√
π.
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Rules of derivation

Example

Find an equation for the tangent line to the curve
y = f (x) = sin(x2) in the point where x =

√
π.

The equation is of the form

y = f ′(
√
π)x + b = −2

√
πx + b

for some b.

We insert (x , y) = (
√
π, f (
√
π)) = (

√
π, 0) and get

0 = −2
√
π ·
√
π + b = −2π + b,

so b = 2π.
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Standard derivatives

f (x) = ex = lim
y→0

(1 + y)
x
y =

[
t :=

y

x

]
= lim

t→0
(1 + xt)

1
t .

Non-trivial fact:

f ′(x) = D
(

lim
t→0

(1 + xt)
1
t

)
= lim

t→0
D
(

(1 + xt)
1
t

)
.

Chain rule:

f ′(x) = lim
t→0

d

dx
(1 + xt) · d

d(1 + xt)
(1 + xt)

1
t

= lim
t→0

t · 1

t
· (1 + xt)

1
t

1 + xt

= lim
t→0

(1 + xt)
1
t = ex
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Standard derivatives

Theorem

f (x) f ′(x)
k 0
xp pxp−1

sin x cos x
cos x − sin x
tan x 1

cos(x)2

ex ex
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Standard derivatives

Example

f (x) = ax = (eln a)x = eln a·x

Outer function y 7→ ey , inner function x 7→ ln a · x .

f ′(x) = ln a · eln a·x = ln(a) · ax .
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Rules of derivation

The chain rule can also be used for compositions of more than two
functions.

Example

Compute the derivative of e(tan x)
2

with respect to x .

Write etan x
2

= f ◦ g ◦ h(x), where h(x) = tan x , g(y) = y2, and
f (z) = ez .

h′(x) = 1
cos(x)2 , g ′(y) = 2y , and f ′(z) = ez .

d

dx
e(tan x)

2

= f ′(g(h(x))) · g ′(h(x)) · h(x)

= e(tan x)
2

· 2 tan x · 1

cos(x)2
.
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Rules of derivation

The chain rule can also be used for compositions of more than two
functions.

Example

Compute the derivative of e(tan x)
2

with respect to x .

Write etan x
2

= f ◦ g ◦ h(x), where h(x) = tan x , g(y) = y2, and
f (z) = ez .

h′(x) = 1
cos(x)2 , g ′(y) = 2y , and f ′(z) = ez .

d

dx
e(tan x)

2

= f ′(g(h(x))) · g ′(h(x)) · h(x)

= e(tan x)
2

· 2 tan x · 1

cos(x)2
.
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Rules of derivation

A good way to remember (and intuitively understand) the chain rule:

df (g(x))

dx
=

df (g(x))

dg(x)
· dg(x)

dx
.

de(tan x)
2

dx
=

de(tan x)
2

d(tan x)2
· d(tan x)2

d tan x
· d tan x

dx
.
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Derivatives of inverse functions

Is there a relation between the derivatives of f : A→ B and
f −1 : B → A?

Note that the identity function g(x) = x can be written as
g(x) = f (f −1(x)).

By the chain rule,

1 = g ′(x) = f ′(f −1(x)) · (f −1)′(x).

So (f −1)′(x) = 1
f ′(f−1(x)) .
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Rules of derivation

Theorem

Let f and g be differentiable functions, and let c be a constant. Then:

(g ◦ f )′ (x) = g ′(f (x))f ′(x).

(f −1)′(x) = 1
f ′(y) , where f (y) = x .
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Standard derivatives

Example

f (x) = ln x is the inverse of g(y) = ey .

So

f ′(x) =
1

g ′(y)
=

1

ey
,

where g(y) = ey = x .

d

dx
ln x =

1

x
.
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Standard derivatives

Example

f (x) = arcsin x is the inverse of g(y) = sin y .

So

f ′(x) =
1

g ′(y)
=

1

cos y
,

where g(y) = sin y = x .

x2 + cos(y)2 = 1, so cos y = ±
√

1− x2.

Since y = arcsin x is defined to satisfy −π2 ≤ x ≤ π
2 , we have

cos y > 0, so cos y =
√

1− x2.

d

dx
arcsin x =

1√
1− x2

.
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Standard derivatives

Example

f (x) = arccos x is the inverse of g(y) = cos y .

So

f ′(x) =
1

g ′(y)
=

1

− sin y
,

where g(y) = cos y = x .

x2 + sin(y)2 = 1, so sin y = ±
√

1− x2.

Since y = arccos x is defined to satisfy 0 ≤ x ≤ π, we have
sin y > 0, so sin y =

√
1− x2.

d

dx
arccos x =

1

−
√

1− x2
.
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Standard derivatives

Example

f (x) = arctan x is the inverse of g(y) = tan y .

So

f ′(x) =
1

g ′(y)
= cos(y)2,

where g(y) = tan y = x .

cos(y)2 =
cos(y)2

sin(y)2 + cos(y)2
=

1

tan(y)2 + 1
=

1

x2 + 1
.

d

dx
arctan x =

1

1 + x2
.
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Standard derivatives

Theorem

f (x) f ′(x)
ax ln(a) · ax

ln x 1
x

arcsin x 1√
1−x2

arccos x 1
−
√
1−x2

arctan x 1
1+x2
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Extreme values

Derivatives can be used to find the extremal values (maximum and
minimum) of a function.
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Extreme values

Definition

a ∈ A is a local maximum for the function f : A→ R if there is an ε
such that f (a) ≥ f (x) for all x ∈ (a− ε, a + ε).

a ∈ A is a global maximum for the function f : A→ R if
f (a) ≥ f (x) for all x ∈ A.

Local and global minima are defined analogously.
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Critical points

Definition

Assume that f : A→ R is differentiable in a ∈ A, and that a is not a
boundary point of A. Then a ∈ A is a critical point for the function f if
f ′(a) = 0.
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Critical points

Theorem

Assume that f is differentiable in a, and that a is not a boundary point of
A. If a is a local maximum or a local minimum of f , then f ′(a) = 0.

“Proof”: If f ′(a) > 0, then f (a+h)−f (a)
h > 0 for all |h| < ε if ε is

small enough.

Thus f (a + h) > f (a) for 0 < h < ε, and f (a + h) < f (a) for
−ε < h < 0.

So f can not be neither local min or local max.

The proof if f ′(a) < 0 is analogous.
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Critical points

Theorem

Assume that f : A→ R is differentiable in a, and that a is not a
boundary point of A. If a is a local maximum or a local minimum of f ,
then f ′(a) = 0.

So to find all the local extreme points of f , we only need to find all
critical points, and all points where f is not differentiable.
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Optimization

Example

Find all the local minima and maxima of f (x) = 3x4 − 4x3.

Since f is a polynomial, it is differentiable everywhere, so we only
need to find points with f ′(x) = 0.

f ′(x) = 12x3 − 12x2 = 12x2(x − 1).

The zeroes of f ′ are the zeroes of its linear factors, so

f ′(x) = 0⇐⇒ x = 0 or x = 1.
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Optimization

Example (Continued)

Find all the local minima and maxima of f (x) = 3x4 − 4x3.

f ′(x) = 0 =⇒ x = 0 or x = 1.

We study the signs of f ′ between the critical points:

x 0 1
f ′ = 12x2(x − 1) − 0 − 0 +
f = 3x4 − 4x3 ↘ → ↘ → ↗

So x = 0 is a saddle point, x = 1 is a local minimum, and there are
no local maxima.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Optimization

Example (Continued)

Find the global minimum and maximum of f (x) = 3x4 − 4x3, if they
exist.

Since there is no local maximum, there can also be no global
maximum.

Since (“∞ ·∞”)

f = x3(3x − 4) −−−→
x→∞

∞,

f is not even upper bounded.

The local minimum at 1 is also a global minimum, because f is
decreasing to the left of 1, and increasing to the right of 1.
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Optimization

Example (Continued)

Find the range of f (x) = 3x4 − 4x3.

The smallest value is f (1) = −1.

The function is continuous on R, so its range is an interval.

The function is not upper bounded, so its range is [−1,∞).
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Optimization

Theorem

If f : [a, b]→ R is continuous on the closed interval [a, b], then f has a
global maximum and a global minimum on [a, b].

If f is differentiable, then the global extreme points are either
obtained in the boundary points a or b, or in the critical points of f .
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Optimization

Example

Find the global minima and maxima of f (x) = 4x3 − 6x2 − 9x on
the interval [−2, 2].

First, we find the critical points of f .

f ′(x) = 12x2 − 12x − 9 = 3(4x2 − 4x − 3) = 3
(
(2x − 1)2 − 4

)
.

f ′(x) = 0⇐⇒ 2x − 1 = ±2⇐⇒ x =
3

2
or x = −1

2
.
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Optimization

Example (Continued)

Find the global minima and maxima of f (x) = 4x3 − 6x2 − 9x on
the interval [−2, 2].

f ′(x) = 0⇐⇒ 2x − 1 = ±2⇐⇒ x =
3

2
or x = −1

2
.

The global extreme points are among{
−2,−1

2
,

3

2
, 2

}
.
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Optimization

Example (Continued)

Find the global minimum and maximum of f (x) = 4x3 − 6x2 − 9x
on the interval [−2, 2].

The global extreme points are among{
−2,−1

2
,

3

2
, 2

}
.

We compute

f (−2) = −38 , f (−1

2
) =

5

2
, f (

3

2
) = −27

2
, f (2) = −10.

The minimum value is −38 and the maximum value is 5
2 .
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Optimization

Theorem

Assume a is a critical point of f .

If f ′′(a) < 0, then a is a local maximum of f .

If f ′′(a) > 0, then a is a local minimum of f .

Thus we can often detect whether a critical point is a local
maximum or a local minimum, without computing f or f ′ between
the critical points.

If f ′′(a) = 0, then a can be a local minimum, a local maximum, a
saddle point, or neither.
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Trigonometric values

Good to remember:

sin−x = − sin x sin(x + π) = − sin x
cos−x = cos x cos(x + π) = − cos x
tan−x = − tan x tan(x + π) = tan x .
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Optimization

Example

Find all the local minima and maxima of f (x) = x + 2 sin x .

f is differentiable everywhere, so we only need to find points with
f ′(x) = 0.

f ′(x) = 1 + 2 cos x = 0

⇐⇒ cos x = −1

2

⇐⇒x =
2π

3
+ 2πn or x =

−2π

3
+ 2πn for n ∈ Z.
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Optimization

Example (Continued)

f (x) = x + 2 sin x , f ′(x) = 1 + 2 cos x .

We study the signs of f ′′(x) = −2 sin x in the critical points:

x 2π
3 + 2πn −2π

3 + 2πn
f ′′(x) − +

So x = 2π
3 + 2πn is local maximum and −2π3 + 2πn is a local

minimum, for every n ∈ Z.
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Critical points

Example

f (x) = x4

f ′(0) = f ′′(0) = 0

0 local minimum, because f (0) = 0 ≤ x4 = f (x) for all x .
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Critical points

Example

f (x) = x3

f ′(0) = f ′′(0) = 0

0 saddle point, because f (−x) = −x3 < 0 ≤ x3 = f (x) for all x > 0.
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Critical points

Example

f (x) =

{
x4 sin

(
1
x

)
if x 6= 0

0 if x = 0
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Critical points

Example (Continued)

f (x) =

{
x4 sin

(
1
x

)
if x 6= 0

0 if x = 0

f ′(x) =


4x3 sin

(
1

x

)
+ x4

−1

x2
cos

(
1

x

)
if x 6= 0

lim
h→0

h4 sin
(
1
h

)
− 0

h
= 0 if x = 0

f ′′(0) = lim
h→0

4h3 sin
(
1
h

)
− h2 cos

(
1
h

)
− 0

h
= 0
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Critical points

Example (Continued)

f (x) =

{
x4 sin

(
1
x

)
if x 6= 0

0 if x = 0

f ′(0) = f ′′(0) = 0, and 0 is neither a local optimum or a saddle
point!
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Asymptotes

Definition

An asymptote of the function f is a straight line L such that there is a
sequence of points (xn, f (xn)) on the function graph such that

Distance between (xn, f (xn)) and 0 tends to ∞
Distance between (xn, f (xn)) and L tends to 0
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Asymptotes

There are two kinds of asymptotes: vertical and slant asymptotes
(including horizontal ones).

Vertical asymptotes x = c exist if

f (x) −−−−→
x→c±

∞.

Slant asymptotes y = ax + b exist if

f (x)− ax −−−−−→
x→±∞

b.

If y = ax + b is a slant asymptote of f , then f ′(x) −−−−−→
x→±∞

a.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Asymptotes

Example

Plot the function f (x) = x3−1
x3−x

Domain
Zeroes
Critical points and their types (minima, maxima, saddle...)
Asymptotes
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Sketching a function graph

Example (Continued)

Plot the function

f (x) =
x3 − 1

x3 − x
=

(x − 1)(x2 + x + 1)

(x − 1)x(x + 1)
.

The domain is the set where the denominator is non-zero, the set
A = Rr {−1, 0, 1}.
On the domain A we can cancel the factors x − 1, so f is equal to

x2 + x + 1

x(x + 1)
.
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Sketching a function graph

Example (Continued)

On the domain A = Rr {−1, 0, 1} f is equal to

x2 + x + 1

x2 + x
.

The numerator is positive for all x , so f is nowhere zero.
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Sketching a function graph

Example (Continued)

On the domain A = Rr {−1, 0, 1} f is equal to

x2 + x + 1

x2 + x
.

We get the derivative

f ′(x) =
(2x + 1)(x2 + x)− (x2 + x + 1)(2x + 1)

(x2 + x)2
=
−2x − 1

(x2 + x)2
.

Since the denominator is strictly positive on A, we have f ′(x) = 0 if
and only if −2x − 1 = 0.

So the only critical point is x = −1
2 .
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Sketching a function graph

Example (Continued)

f ′(x) =
(2x + 1)(x2 + x)− (x2 + x + 1)(2x + 1)

(x2 + x)2
=
−2x − 1

(x2 + x)2
.

Sign study:

x −1
2

f ′ + 0 −
f ↗ → ↘

So x = −1
2 is a local maximum, with

f (
−1

2
) =

−1
2

2
+ −1

2 + 1
−1
2 (−12 + 1)

=
3/4

−1/4
= −3
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Sketching a function graph

Example (Continued)

On the domain A = Rr {−1, 0, 1} f is equal to

x2 + x + 1

x(x + 1)
.

In the singular points (where f is not defined), we get the limits

lim
x→−1−

f (x) = lim
x→0+

f (x) =∞,

lim
x→−1+

f (x) = lim
x→0−

f (x) = −∞,

and

lim
x→1

f (x) = lim
x→1

x2 + x + 1

x(x + 1)
=

3

2
.
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Sketching a function graph

Example (Continued)

We have two vertical asymptotes x = −1 and x = 0, as f has an
infinite limit in those points.

To find slant asymptotes, we must first compute

lim
x→±∞

f ′(x) = lim
x→±∞

−2x − 1

(x2 + x)2
= 0.

So any slant polytope has the slope 0, and so it has the form

y = b = lim
x→±∞

f (x).
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Sketching a function graph

Example (Continued)

lim
x→±∞

f (x) = lim
x→±∞

x2 + x + 1

x2 + x
= lim

x→±∞

1 + 1
x + 1

x2

1 + 1
x

= 1.

So we have a unique slant (actually, horizontal) asymptote y = 1
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Sketching a function graph

Example (Continued)

y = f (x) =
x3 − 1

x3 − x
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Rolle’s Lemma (as told by XKCD)
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Mean value theorem

Theorem

If f is differentiable on [a, b], then there is c ∈ [a, b] with
f ′(c)(b − a) = f (b)− f (a).
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Mean value theorem

Theorem

If f is differentiable on [a, b], then there is c ∈ [a, b] with
f ′(c)(b − a) = f (b)− f (a).

Proven using Rolle’s lemma on

g(x) = f (x)− f (b)− f (a)

b − a
(x − a)− f (a)

Used to bound the error term in approximations.
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Linear approximation

Assume we want to compute f (x), knowing f (x0) for some point x0

If x is close to x0, then

f ′(x0) ≈ f (x)− f (x0)

x − x0

Rewrite f (x) ≈ f (x0) + f ′(x0)(x − x0).
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Newton-Raphson method

Linear approximation: f (x) ≈ f (x0) + f ′(x0)(x − x0).

Again, this suggests an algorithm to approximate f (x) = 0.

Assume f (x) = 0, and that x − |x0| is small. Then
f (x0) ≈ −f ′(x0)(x − x0).

So x − x0 ≈ −f (x0)f ′(x0)
.

Set

x1 = x0 −
f (x0)

f ′(x0)

and repeat.
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Newton-Raphson method

Task: Find a such that f (a) = 0.

Algorithm: Start with a point x0, such that f ′(x) has the same sign
on all of [x0, a] (or [a, x0], if a is to the left of x0).

Given xn, let

xn+1 = xn −
f (xn)

f ′(xn)

Continue for as many steps as you see fit.

If x0 is sufficiently close to a, then the the sequence converges to a.
Proving that the sequence converges is often rather difficult.
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Newton-Raphson method

Example

Approximate 2
1
3 .

Want to find a such that f (a) = 0, where f (x) = x3 − 2.

f (x)

f ′(x)
=

x3 − 2

3x2
=

x

3
− 2

3x2

Given xn in the Newton-Raphson algorithm,

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

xn
3

+
2

3x2n
=

2

3

(
xn +

1

x2n

)
.
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Newton-Raphson method

Example

Approximate 2
1
3 .

Choose x0 = 1.

xn+1 =
2

3

(
xn +

1

x2n

)
.

x1 = 2
3 (1 + 1) = 4

3 .

x2 = 2
3 ( 4

3 + 9
16 ) = 182

144 = 91
72 .

We see that (
91

72

)3

≈ 2.019,

so already after two iterations we have a good approximation!
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Newton-Raphson method

Example

We prove that x3 = 91
72 is a good approximation by the intervediate

value theorem: (
90

72

)3

=
5

4

3

=
125

64
< 2 <

(
91

72

)3

.

90

72
< 2

1
3 <

91

72
,

so our approximation has an error of at most 1/72 ≈ 0.0139.
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Taylor polynomials

Estimate f (x) close to some point a, where f is easy to evaluate.

For now, a = 0.

Easiest possible approximation: f (x) ≈ f (0).

We approximate f by a constant function (degree 0 polynomial)

f (x) ≈ T0(x) ≡ f (0).

We call this a “degree 0 approximation”.
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Taylor polynomials

y = T0(x) = 0

y = f (x) = sin x
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Next best approximation is linear:

f (x) ≈ T1(x) = f (0) + f ′(0)x .

T1 is the only linear function such that

T1(0) = f (0)
T ′1(0) = f ′(0)
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Taylor polynomials

y = T1(x) = x

y = f (x) = sin x

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series
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Goal: find a polynomial Tn(x) of degree n that approximates f as
well as possible near 0:

Tn(0) = f (0)
T ′n(0) = f ′(0)
· · ·
T

(n)
n (0) = f (n)(0)

Tn(x) will be called the degree n Taylor polynomial of f around 0.
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Taylor polynomials

y = T3(x) = x − x3

6

y = f (x) = sin x
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Taylor polynomials

y = T3(x) = x − x3

6
+

x5

120

y = f (x) = sin x

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Taylor polynomials

Goal: find a polynomial

Tn(x) = c0 + c1x + c2x
2 + c3x

3 · · ·+ cnx
n

of degree n that approximates f as well as possible near 0.
Derivatives:

Tn(x) = c0 + c1x + c2x
2 + c3x

3 · · · + cnx
n

T ′n (x) = c1 + 2c2x + 3c3x
2 · · · + ncnx

n−1

T ′′n (x) = 2c2 + 6x + · · · n(n − 1)xn−2

· · ·

T (n)
n (x) = n!cn

Derivatives at 0:
f (0) = Tn(0) = c0

f ′(0) = T ′n (0) = c1

f ′′(0) = T ′′n (0) = 2c2

· · ·

f (n)(0) = T (n)
n (0) = n!cn
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So the degree n Taylor polynomial of f around 0 is

Tn(x) = f (0) + f ′(0)x +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
xn.

This is the best possible degree n approximation of f , in that

f (x)− Tn(x)

xn
−−−→
x→0

0,

assuming f (n) is continuous around 0.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Taylor polynomials

More generally, the degree n Taylor polynomial of f around a is

Tn(x ; a) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+ · · ·+ f (n)(a)

n!
(x−a)n.

This is the best possible degree n approximation of f , in that

f (x)− Tn(x ; a)

(x − a)n
−−−→
x→a

0,

assuming f (n) is continuous around a.
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Error terms in Taylor polynomials

Better estimate of f (x)− Tn(x):

Theorem (Taylor’s Theorem)

Let Tn be the degree n Taylor polynomial of f around 0. Then

f (x)− Tn(x) =
f (n+1)(s)

(n + 1)!
xn+1

for some s in the interval between a and x .

Sketch of proof:

Consider F (s) = f (x)− Tn(x ; s) as a function of s ∈ [0, x ].
Use Rolle’s Lemma (or the mean value theorem) on F (s).
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The same holds for the Taylor polynomial around any point a:

Theorem (Taylor’s Theorem)

Let Tn(·; a) be the degree n Taylor polynomial of f around a. Then

f (x)− Tn(x ; a) =
f (n+1)(s)

(n + 1)!
(x − a)n+1

for some s in the interval between a and x .
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Error terms in Taylor polynomials

Theorem (Taylor’s Theorem)

Let Tn(·; a) be the degree n Taylor polynomial of f around a. Then

f (x)− Tn(x ; a) =
f (n+1)(s)

(n + 1)!
(x − a)n+1

for some s in the interval between a and x .

Corollary

If |f (n+1)(s)| < M for every s ∈ [a, x ], then

|f (x)− Tn(x ; a)| < M(x − a)n+1

(n + 1)!
.
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Corollary

If x is such that

max
s∈[a,x]

|f (n+1)(s)|
(n + 1)!

(x − a)n+1 −−−→
n→∞

0,

then
|f (x)− Tn(x ; a)| −−−→

n→∞
0,

and so we can write

f (x) = lim
n→∞

Tn(x ; a) =
∞∑
k=0

f (k)(a)

k!
(x − a)k .
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The expression

T (x) =
∞∑
k=0

f (k)(a)

k!
(x − a)k

is called the Taylor series of f at a.

By convension: f (0)(x) = f (x) and 0! = 1.

The Taylor series does not always converge, and even if it does, it
might not converge to f (x).
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If the error term

max
s∈[a,x]

|f (n+1)(s)|
(n + 1)!

(x − a)n+1 −−−→
n→∞

0,

then T (x) converges and f (x) = T (x).

This criterion holds for all polynomials, trigonometric functions,
exponential functions, etc...

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Taylor series

Recall the quotient criterion for series convergence: If

f (n+1)(x)

(n + 1)!
(x − a)n+1

/
f (n)(x)

(n!)
(x − a)n

=
f (n+1)(x)

(n + 1)f (n)(x)
(x − a) −−−→

n→∞
t ∈ (−1, 1),

then

T (x) =
∞∑
k=0

f (k)(a)

k!
(x − a)k

converges.
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If
f (n+1)(x)

(n + 1)f (n)(x)
(x − a) −−−→

n→∞
t ∈ (−1, 1),

then T (x) converges.

In particular, this holds if

|x − a| < lim
n→∞

(n + 1)f (n)(x)

f (n+1)(x)
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Maclaurin series

The Taylor series of f at a = 0, i.e.

T (x) =
∞∑
k=0

f (k)(0)

k!
xk ,

is also known as the Maclaurin series of f .
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Example

Estimate sin 10◦ using the degree 4 Taylor series around 0.

f (i)(x) f (i)(0)
f sin x 0
f ′ cos x 1
f ′′ − sin x 0
f ′′′ − cos x −1
f ′′′′ sin x 0

So

T4(x) = 0 + 1x +
0

2
x2 +

−1

6
x3 +

0

24
x4 = x − x3

6
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Error terms in Taylor polynomials

Example

T4(10◦) = T4( π18 ) = π
18 −

π3

6·183 ≈ 0.173646.

Error term

f (
π

18
)− T4(

π

18
) =

f (5)(s)

120
s5

for some s ∈ [0, π18 ], f (x) = sin x .

f (5)(s) = cos(s) ≤ 1 and s5 ≤ π5

185 .

So the error term is at most π5

120·185 ≈ 0.0000013.
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Maclaurin series of ex

Let f be a function such that f ′(x) = f (x) and f (0) = 1.

Then f (k)(0) = 1 for every k , so the Maclaurin series is

T (x) = 1 + x +
x2

2
+

x3

6
+ · · · =

∞∑
k=0

xk

k!
.

In particular

f (1) = 1 + 1 +
1

2
+

1

6
+ · · · =

∞∑
k=0

1

k!
= e.
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Maclaurin series of ex

The Taylor series around a is

S(a + b) = f (a) + f ′(a)b + f ′′(a)
b2

2
+ f ′′′(a)

b3

6
+ · · ·

= f (a) + f (a)b + f (a)
b2

2
+ f (a)

b3

6
+ · · · = f (a)T (b).

But f , T , and S represent the same function so f (a+b) = f (a)f (b).

So f is an exponential function, with f (1) = e =⇒ f (x) = ex .
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Maclaurin series of sin x

f (i)(x) f (i)(0)
f sin x 0
f ′ cos x 1
f ′′ − sin x 0
f ′′′ − cos x −1

· · · · · ·
f (2k) ± sin x 0
f (2k+1) (−1)k cos x (−1)k

So sin x has the Maclaurin series

sin x = x − x3

6
+

x5

120
− · · · =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
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Maclaurin series of cos x

f (i)(x) f (i)(0)
f cos x 1
f ′ − sin x 0
f ′′ − cos x −1
f ′′′ sin x 0

· · · · · ·
f (2k) (−1)k cos x (−1)k

f (2k+1) ± sin x 0

So cos x has the Maclaurin series

cos x = 1− x2

2
+

x4

24
− · · · =

∞∑
k=0

(−1)kx2k

(2k)!

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Maclaurin series of ln(x + 1)

f (i)(x) f (i)(0)
f ln(x + 1) 0
f ′ (x + 1)−1 1
f ′′ −(x + 1)−2 −1
f ′′′ 2(x + 1)−3 2
f ′′′′ −6(x + 1)−4 −6

· · · · · ·
f (k) (−1)k−1(k − 1)!(x + 1)−k (−1)k−1(k − 1)!

So ln(x + 1) has the Maclaurin series

ln(x + 1) =
∞∑
k=1

(−1)k+1(k − 1)!xk

k!
=
∞∑
k=1

(−1)k+1xk

k
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Standard Maclaurin series

Theorem

f (x) Series Convergence

Polynomial P(x) P(x) All x

ex
∑

k≥0
xk

k! All x

sin x
∑

k≥0
(−1)kx2k+1

(2k+1)! All x

cos x
∑

k≥0
(−1)kx2k

(2k)! All x

ln(x + 1)
∑

k≥1
(−1)k+1xk

k −1 < x ≤ 1.
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Taylor series

Taylor series can be composed and multiplied

Example

sin(x2) =
∞∑
k=0

(−1)k(x2)2k+1

(2k + 1)!
= x2 − x6

3!
+

x10

5!
− · · · .

x2 sin x =
∞∑
k=0

(−1)kx2 · x2k+1

(2k + 1)!
= x3 − x5

3!
+

x7

5!
− · · · .
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Taylor series

Taylor series can also be differentiated termwise.

Example

d

dx
sin x =

∞∑
k=0

(−1)k d
dx x

2k+1

(2k + 1)!

=
∞∑
k=0

(−1)k(2k + 1)x2k

(2k + 1)!

=
∞∑
k=0

(−1)kx2k

(2k)!

= cos x .
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Taylor series

One can also use Taylor series to compute limits (as x → a).

Example

Compute

lim
x→0

x2 sin(x2)

(1− cos x)2

x2 sin(x2) = x2
(
x2 − x6

6
+

x10

120
− · · ·

)
= x4 + o(x4).

(1− cos x)2 =

(
−x2

2
+

x4

24
− · · ·

)2

=
x4

4
+ o(x4).

f (x) = o(xp) means limx→0
f (x)
xp = 0.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Standard functions and continuity
Derivatives and how to compute them
Extreme values and asymptotes
Taylor polynomials and power series

Taylor series

Example (Continued)

x2 sin(x2) = x2
(
x2 − x6

6
+

x10

120
− · · ·

)
= x4 + o(x4).

(1− cos x)2 =

(
−x2

2
+

x4

24
− · · ·

)2

=
x4

4
+ o(x4).

So

lim
x→0

x2 sin(x2)

(1− cos x)2
= lim

x→0

x4 + o(x4)
x4

4 + o(x4)
= lim

x→0

1 + o(1)
1
4 + o(1)

= 4.
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What is an area?

The area of an a× b rectangle is ab.

The area of a disjoint union of regions is the sum of their area.

If a region A fits inside B, then B has larger area than A.

This is enough to define the area of many regions in the plane.
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Scan by Easy Scanner

We are interested in the area of the black region R.

This is smaller than the area of any rectangular region containing R,
and larger than the area of any rectangular region contained in R.

If there is a number A such that we can make both the red and the
blue area arbitrarily close to A, then we say that this is the area of
the black region.
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The integral of a (positive) function f between a and b with respect
to x is the area between the x-axis and the function graph.

Scan by Easy Scanner

Notation: ∫ b

a

f (x)dx .
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Subdivide the interval from a to b into n parts.

Look at a function that is ≥ f and constant on each interval.
Denote the area under it by Rn.

Look at a function that is ≤ f and constant on each interval.
Denote the area under it by Ln.

Scan by Easy Scanner

If
lim

n→∞
Ln = lim

n→∞
Rn,

then f is integrable. We call this limit∫ b

a

f (x)dx .
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The integral
∫ b

a
f (x)dx depends on:

The function f.
The endpoints a and b.

∫ b

a

f + g dx =

∫ b

a

f dx +

∫ b

a

g dx .

∫ b

a

cf dx = c

∫ b

a

f dx

where c ∈ [0,∞) is a constant.
Scan by Easy Scanner
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Scan by Easy Scanner

How does
∫ b

a
f (x)dx depend on the

endpoints?

∫ b

a

f (t)dt +

∫ c

b

f (t)dt =

∫ c

a

f (t)dt.
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Scan by Easy Scanner

h min
t∈[x,x+h]

f (t) ≤
∫ x+h

a

f (t)dt −
∫ x

a

f (t)dt ≤ h max
t∈[x,x+h]

f (t)
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f (x)← min
t∈[x,x+h]

f (t) ≤
∫ x+h

a
f (t)dt −

∫ x

a
f (t)dt

h
≤ max

t∈[x,x+h]
f (t)→ f (x)

So by the policemen’s lemma:∫ x+h

a
f (t)dt −

∫ x

a
f (t)dt

h
−−−→
x→0

f (x).
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Theorem (Fundamental Theorem of Calculus)

Let f be a continuous function on a neighbourhood of [a, b], and
x ∈ (a, b). Then d

dx

∫ x

a
f (t)dt = f (x).

Corollary

Let F : [a, b]→ R be a differentiable function such that F ′(x) = f (x) for
every x ∈ (a, b). Then ∫ b

a

f (x)dx = F (b)− F (a).
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So to compute an integral of f , we only need to find a function F
whose derivative is f .

Such a function F is called a primitive function of f .

If F is a primitive function of f , then all primitive functions are given
by F + c , where c is a constant.
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Example

Compute
∫ 1

0
x dx .

A primitive function of f (x) = x is F (x) = x2

2 .

So ∫ 1

0

x dx =

[
x2

2

]1
0

notation
=

12

2
− 02

2
=

1

2
− 0 =

1

2
.
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Example

Compute
∫ π
0

sin x dx .

A primitive function of f (x) = sin x is F (x) = − cos x .

So∫ π

0

sin x dx = [− cos x ]π0 = − cosπ − (− cos 0) = 1− (−1) = 2.
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Integrals of negative functions

If f (x) is negative on [a, b] then
∫ b

a
is the negative area between the

x-axis and the function graph.

The standard rules still hold:∫
(f + g)dx =

∫
fdx +

∫
gdx∫ b

a
f dx +

∫ c

b
f dx =

∫ c

a
f dx

Fundamental theorem of calculus.
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Example

Compute
∫ π
0

cos x dx .

A primitive function of f (x) = cos x is F (x) = sin x .

So ∫ π

0

cos x dx = [sin x ]π0 = 0− 0 = 0
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Unbounded integrals

Primitive functions

We often denote an arbitrary primitive function of f by
∫
f (x)dx

(without endpoints).

f (x)
∫
f (x)dx

xp xp+1

p+1 + c if p 6= −1

sin x − cos x + c

cos x sin x + c

ex ex + c

f (x)
∫
f (x)dx

1
x ln x + c if x > 0

1
x ln(−x) + c if x < 0

1
1+x2 arctan x + c

1√
1−x2

arcsin x + c

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Primitive functions

WARNING! We can only use primitive functions to compute∫ b

a
f (x)dx if f is continuous on all of [a, b].

Example

f (x) = 1
x2 has the primitive function −1x + c .[

−1

x

]1
−1

= −1− 1 = −2.

But f (x) is a positive function, so
∫ 1

−1 f (x)dx can not be negative!

Next time we will learn to handle integrals of functions with
singularities.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Variable substitution

If F is a primitive function to f , then the chain rule says that

d

dx
F (g(x)) = f (g(x))g ′(x).

Thus, ∫
f (g(x))g ′(x)dx = F (g(x)) + c .

We think of this as substituting x by the variable g(x).

This is easier to think about formally:∫
fdt =

∫
f
dt

dx
dx .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Variable substitution

Example

Compute
∫

2x cos(x2)dx .

We see both the expression x2 and its derivative 2x , so we try the
substitution t = x2.

∫
2x cos(x2)dx =

[
t = x2

dt = 2x dx

]
=

∫
cos t dt

= sin t + c = sin x2 + c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Variable substitution

Example

Compute
∫

tan x dx .

Rewrite tan x = sin x
cos x .

∫
tan xdx =

[
t = cos x

dt = − sin x dx

]
=

∫
−1

t
dt

= − ln |t|+ c = − ln | cos x |+ c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Variable substitution

Example

Compute
∫

dx
x2+4 .

We know the integral of 1
x2+1

∫
dx

x2 + 4
=

∫
dx

4(( x
2 )2 + 1)

=

[
t = x

2

dt = dx
2

]
=

∫
1

4

2dt

t2 + 1
=

1

2
arctan t + c =

1

2
arctan

(x
2

)
+ c .

More generally, ∫
dx

x2 + a
=

1√
a

arctan

(
x√
a

)
+ c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

∫
dx

(x + a)
= ln |x + a|+ c

If n 6= 1, ∫
dx

(x + a)n
= − 1

(n − 1)(x + a)n−1
+ c

∫
dx

x2 + a
=

1√
a

arctan

(
x√
a

)
+ c

This allows us to compute the integral of any rational function p(x)
q(x)

(where p and q are polynomials).
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

dx
x2−1 .

Ansatz:

1

x2 − 1
=

1

(x − 1)(x + 1)
=

a(x − 1) + b(x + 1)

(x − 1)(x + 1)

=
a

x + 1
+

b

x − 1

for some a, b.

1 = (a + b)x + (−a + b), so a = −b, b = 1
2 .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example (Continued)

Compute
∫

dx
x2−1 .

∫
dx

x2 − 1
=

∫ − 1
2

x + 1
+

∫ 1
2

x − 1

=
1

2
(− ln |x + 1|+ ln |x − 1|) + c

=
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣+ c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

3x−4
x2−3x+2dx .

x2 − 3x + 2 = (x − 1)(x − 2) so we do the Ansatz

3x − 4

x2 − 3x + 2
=

a

x − 1
+

b

x − 2
.

3x − 4 = a(x − 2) + b(x − 1) = (a + b)x + (−2a− b).

a + b = 3 and 2a + b = 4, so a = 1 and b = 2.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example (Continues)

Compute
∫

3x−4
x2−3x+2dx .

∫
3x − 4

x2 − 3x + 2
dx =

∫
1

x − 1
+

2

x − 2
dx

= ln |x − 1|+ 2 ln |x − 2|+ c

= ln
∣∣(x − 1)(x − 2)2

∣∣+ c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

2x2+x+2
x3+x dx .

x3 + x = x(x2 + 1).

Ansatz:
2x2 + x + 2

x3 + x
=

a

x
+

bx + c

x2 + 1
.

Note that we need a linear factor in the numerator over the
quadratic denominator x2 + 1.

2x2 + x + 2 = a(x2 + 1) + bx2 + cx = (a + b)x2 + cx + a.

a + b = 2, c = 1, a = 2, so b = 0.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example (Continued)

Compute
∫

2x2+x+2
x3+x dx .

∫
2x2 + x + 2

x3 + x
dx =

∫
2

x
+

1

x2 + 1
dx

= 2 ln |x |+ arctan x + c

= ln(x2) + arctan x + c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

dx
x(x−1)2 .

First Ansatz:
1

x(x − 1)2
=

a

x
+

bx + c

(x − 1)2
.

Simplify by breaking out a part of the numerator that is divisible by
x − 1:

1

x(x − 1)2
=

a

x
+

b1
(x − 1)

+
b2

(x − 1)2
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example (Continued)

1

x(x − 1)2
=

a

x
+

b1
(x − 1)

+
b2

(x − 1)2
.

1 = a(x − 1)2 + b1x(x − 1) + b2x

= (a + b1)x2 + (−2a− b1 + b2)x + a.

 a + b1 = 0
2a + b1 − b2 = 0
a = 1

=⇒

 a = 1
b1 = −1
b2 = 1
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example (Continued)

Compute
∫

dx
x(x−1)2 .

∫
dx

x(x − 1)2
=

∫
1

x
− 1

x − 1
+

1

(x − 1)2
dx

= ln |x | − ln |x − 1| − (x − 1)−1 + c

= ln

∣∣∣∣ x

x − 1

∣∣∣∣− 1

x − 1
+ c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions: Ansatzes

1

(x − a)(x − b)
=

A

x − a
+

B

x − b

1

(x − a)(x2 + b)
=

A

x − a
+

Bx + C

x2 + b

1

(x − a)(x − b)n
=

A

x − a
+

B1

x − b
+

B2

(x − b)2
+ · · ·+ Bn

(x − b)n

1

(x − a)(x2 + b)n
=

A

x − a
+
B1x + C1

x2 + b
+

B2x + C2

(x2 + b)2
+ · · ·+ Bnx + Cn

(x2 + b)n
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Polynomial division

Theorem

Every rational function f (x) = p(x)
q(x) can be written

f (x) = a(x) +
r(x)

q(x)
,

where a and r are polynomials and deg r < deg q.

Example

x3

x2 − 1
=

x(x2 − 1) + x

x2 − 1
= x +

x

x2 − 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Polynomial division

Theorem

Every rational function f (x) = p(x)
q(x) can be written

f (x) = a(x) +
r(x)

q(x)
,

where a and r are polynomials and deg r < deg q.

Example

x4 + 2x

x2 − 1
=

x2(x2 − 1) + x2 + 2x

x2 − 1
= x2 +

x2 + 2x

x2 − 1

= x2 +
(x2 − 1) + 1 + 2x

x2 − 1
= x2 + 1 +

2x + 1

x2 − 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

x3

x2−1dx .

Polynomial division and partial fractions:

x3

x2 − 1
= x +

x

x2 − 1
= x +

x

(x − 1)(x + 1)
= x +

a

x − 1
+

b

x + 1

x = a(x + 1) + b(x − 1) = (a + b)x + (a− b){
a + b = 1
a− b = 0

=⇒ a = b =
1

2
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions

Example

Compute
∫

x3

x2−1dx .

∫
x3

x2 − 1
dx =

∫
x +

1

2(x − 1)
+

1

2(x + 1)
dx

=
x2

2
+

1

2
ln |x − 1|+ 1

2
ln |x + 1|+ c

=
1

2

(
x2 + ln |x2 − 1|

)
+ c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integrating rational functions: Recipe

Do polynomial division and integrate the polynomial term.

Factorize the denominator

Assign the correct Ansatz/guess.

Solve the linear equation to find the coefficients in the numerators.

Integrate each of the terms.

The answer should be a sum of powers, logarithms, and
arcustangents.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

The product rule for derivatives says that

d

dx
f (x)g(x) = f ′(x)g(x) + f (x)g ′(x)

Take the primitive function of both sides, and rearrange:∫
f ′(x)g(x)dx = f (x)g(x)−

∫
f (x)g ′(x)dx

So instead of integrating f ′g , we can integrate g ′f .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

If F is the primitive function of f :∫
f (x)g(x)dx = F (x)g(x)−

∫
F (x)g ′(x)dx

Useful if the integrand is a product of some function f that is easy
to integrate, and another function g that is easy to differentiate.

We often use the notation

∫ ↑︷︸︸︷
f (x) g(x)︸︷︷︸

↓

dx

to indicate the parts when we do integration by parts.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

Example

Compute
∫
x cos x dx .

∫
x︸︷︷︸
↓

↑︷︸︸︷
cos x dx = x sin x −

∫
sin x dx

= x sin x + cos x + c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

Example

Compute
∫
x2 ln x dx .

∫ ↑︷︸︸︷
x2 ln x︸︷︷︸

↓

dx =
x3 ln x

3
−
∫

x3

3

1

x
dx

=
x3 ln x

3
−
∫

x2

3
dx

=
x3 ln x

3
− x3

9
+ c
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

Example

Compute
∫
ex cos x dx .

Both factors are equally easy to both integrate and differentiate, so
integration by parts probably does not help. But let’s try anyway!

∫ ↑︷︸︸︷
ex cos x︸︷︷︸

↓

dx = ex cos x −
∫
−ex sin x dx

= ex cos x +

∫
ex sin x dx

That did not help. Let’s try again!
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

Example

Compute
∫
ex cos x dx .

∫
ex cos x dx = ex cos x +

∫ ↑︷︸︸︷
ex sin x︸︷︷︸

↓

dx

= ex cos x + ex sin x −
∫

ex cos x dx

That did not help. Or...wait! We get:

2

∫
ex cos x dx = ex cos x + ex sin x + c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Integration by parts

Example

Compute
∫

ln x dx .

This does not even look like a product. Still, we can partially
integrate!

∫
ln x dx =

∫ ↑︷︸︸︷
1 ln x︸︷︷︸

↓

dx = x ln x −
∫

x
1

x
dx

= x ln x − x + c = x(ln x − 1) + c .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Trigonometric substitutions

Example

Compute
∫ √

1 + x2 dx .

This integral does not lend itself to any obvious substitution.

Idea:
√

1 + x2 is the hypothenuse of a right-angled triangle.

x = tanα
√

1 + x2 =
1

cosα
dx =

dα

cos2 α
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Trigonometric substitutions

Example (continued)

x = tanα
√

1 + x2 =
1

cosα
dx =

dα

cos2 α
.

Now ∫ √
1 + x2 dx =

∫
dα

cos3 α
.

An integral that is a rational in terms of trigonometric functions can
sometimes be solved by some clever substitution.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Trigonometric substitutions

Example (continued)

There is one universal substitution, that transforms all integrals that
are rational in terms of trigonometric functions to integrals that are
rational in a variable t:

Recall: 1
cos2 β = 1 + tan2 β.

t = tan α
2 .

sinα = 2 sin α
2 cos α2 = 2t

1+t2 .

cosα = 2 cos2 α2 − 1 = 1−t2
1+t2 .

dα = 2 d arctan t
dt = 2dt

1+t2 .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Trigonometric substitutions

Example (continued)

x = tanα
√

1 + x2 =
1

cosα
dx =

dα

cos2 α
.

t = tan
α

2
cosα =

1− t2

1 + t2
dα =

2dt

1 + t2
.

Now ∫ √
1 + x2 dx =

∫
dα

cos3 α
=

∫
2(1 + t2)2dt

(1− t2)3
.

This reduces the integral to a (complicated, but still) rational
function, that can be integrated via partial fractions.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

∫∞
a

f (x)dx is a generalized integral.

Problem: there is no “red rectangular area” that contains

{(x , y) ∈ R2 : a ≤ x , 0 ≤ y ≤ f (x)}.

We define the generalized integral as a limit∫ ∞
a

f (x)dx = lim
b→∞

∫ b

a

f (x)dx .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

The limit ∫ ∞
a

f (x)dx = lim
b→∞

∫ b

a

f (x)dx

might not exist, or might be infinite.

Example ∫ ∞
0

1 dx = lim
b→∞

∫ b

0

1 dx = lim
b→∞

b =∞.

∫ ∞
0

cos x dx = lim
b→∞

[sin x ]b0 = lim
b→∞

(sin b − sin 0)

does not converge.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example ∫ ∞
1

1

x
dx = lim

b→∞
[ln x ]b1 = lim

b→∞
ln b − 0 =∞.

If p 6= 1, then∫ ∞
1

1

xp
dx = lim

b→∞

[
x−p+1

−p + 1

]b
1

= lim
b→∞

1

p − 1

(
1− b1−p

)
=

{ 1
p−1 if p > 1

∞ if p < 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Theorem

The integral ∫ ∞
1

1

xp
dx

is 1
p−1 if p > 1 and divergent if p ≤ 1.

For series, we knew that
∞∑
n=1

1

np

was convergent if p > 1 and divergent if p ≤ 1.

For integrals, we get the same result, and in addition we can find
exact values if the integral is convergent.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

If f (x) −−−→
x→a

∞, then
∫ b

a
f (x)dx is also a

generalized integral.

We define the generalized integral as a limit∫ b

a

f (x)dx = lim
c→a+

∫ b

c

f (x)dx .
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example ∫ 1

0

1

x
dx = lim

a→0+
[ln x ]1a = lim

a→0+
0− ln a =∞.

If p 6= 1, then∫ 1

0

1

xp
dx = lim

a→0+

[
x1−p

1− p

]1
a

= lim
a→0+

1

1− p

(
1− 1

ap−1

)
=

{ 1
1−p if p < 1

∞ if p > 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

If f has a singularity in c ∈ [a, b], we subdivide the interval:∫ b

a

f (x)dx =

∫ c

a

f (x)dx +

∫ b

c

f (x)dx .

Remember: To use the Fundamental Theorem of Calculus to
compute

∫ b

a
f (x)dx , f must be continuous on all of [a, b].
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

If f has a singularity in c ∈ [a, b], we subdivide the interval:∫ b

a

f (x)dx =

∫ c

a

f (x)dx +

∫ b

c

f (x)dx .

Example

Compute ∫ ∞
−∞

x

x2 − 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example

Compute ∫ ∞
−∞

x

x2 − 1
.

Singularities in ±1.∫ ∞
−∞

x

x2 − 1
=

∫ −1
−∞

x

x2 − 1
+

∫ 1

−1

x

x2 − 1
+

∫ ∞
1

x

x2 − 1
.
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Sequences and series
Derivatives

Integrals
Differential equations

Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example (Continued)

Partial fractions:

x

x2 − 1
=

1

2(x − 1)
+

1

2(x + 1)
.

Primitive function:

F (x) =

∫
x

x2 − 1
dx =

1

2
(ln |x − 1|+ ln |x + 1|) + c

=
1

2
ln |x2 − 1|+ c .
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Integrals and the fundamental theorem of calculus
Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example (Continued)

F (x) =
1

2
ln |x2 − 1|+ c

∫ ∞
−∞

x

x2 − 1
=

∫ −1
−∞

x

x2 − 1
+

∫ 1

−1

x

x2 − 1
+

∫ ∞
1

x

x2 − 1

= [F (x)]−1
−

−∞ + [F (x)]1
−

−1− + [F (x)]∞1+

= lim
b→−1−

F (b) + lim
b→1−

F (b) + lim
b→∞

F (b)

− lim
a→−∞

F (a)− lim
a→−1+

F (a)− lim
a→1+

F (a)

“ = −∞−∞+∞−∞+∞+∞”
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Partial fraction and integration by parts
Unbounded integrals

Generalized integrals

Example (Continued)

So the integral ∫ ∞
−∞

x

x2 − 1

is divergent.

Still, the integrand f = x
x2−1 is odd, meaning that f (−x) = −f (x),

so the integral consists of a positive part and a negative part of
“equal size”.

But since this “equal size” is infinite, the parts do not cancel.
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First order linear ODE
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High school physics

Free fall (no air resistance)

y(t) altitude after time t.

Acceleration
a(t) = v ′(t) = y ′′(t) = −g

(gravity constant).
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High school physics

v(t) =
∫
−g dt = −gt + v0, v0 ∈ R initial velocity.

y(t) =
∫
v(t)dt = − gt2

2 + v0t + y0, y0 ∈ R initial altitude.

This is a solution to the differential equation

y ′′ = −g .
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College physics

With air resistance (no turbulence):

Now
a(t) = v ′(t) = y ′′(t) = −g + ky ′

(gravity and drag constants, k < 0).

How do you solve a problem like

y ′′ − ky ′ + g = 0?
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Ordinary differential equation

An ordinary differential equation (ODE) is an equation of the form

f (t, y , y ′, y ′′, . . . ) = 0,

where y is a function of one independent variable t.

If only the “variables” t, y , y ′, . . . y (n) are involved, then the ODE
has order n.

A solution to an ODE is a formula for all functions y that satisfies
the equation.

We will learn to solve three different kinds of ODEs in this course.
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Separable equations

A first order equation has only t, y , y ′ involved in the equation.

First: isolate y ′ on the left hand side:

y ′ = f (y , t).

If the right hand side has the form

f (y , t) =

function of y︷ ︸︸ ︷
1

g(y)
· h(t)︸︷︷︸
function of t

,

then the equation is separable.
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Separable equations

y ′ =
1

g(y)
h(t) =⇒ g(y)y ′(t) = h(t).

Integrate both sides:∫
g(y)dy =

∫
g(y)y ′(t)dt =

∫
h(t)dt

If G and H are primitive functions of g and h, then

G (y) = H(t) + c .

If G is invertible, then y = G−1(H(t) + c).
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Separable equations

Example

Solve yy ′ = et .

Integrate both sides:

y2

2
+ a =

∫
y dy =

∫
yy ′ dt =

∫
et dt = et + b

for some constants a and b.

y2 = 2et + c =⇒ y = ±
√

2et + c .
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Separable equations

Example

Solve y ′ = 2ty2 if y(0) = 1.

Rewrite as 1
y2

dy
dt = 2t and integrate both sides:

−y−1 + a =

∫
dy

y2
=

∫
2t dt = t2 + b

for some local constants a and b.

y−1 = c − t2 =⇒ y =
1

c − t2
.
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Separable equations

Example

Solve y ′ = 2ty2 if y(0) = 1.

y =
1

c − t2
.

1 = y(0) = 1
c , so c = 1 in the neighbourhood of 0.

y =
1

1− t2

when t ∈ (−1, 1).

This is called an initial value problem.
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Linear equations

The equation
y ′ + f (y)g(t) = h(t)

can not be solved in general if h 6≡ 0.

But we can solve the linear equation

y ′ + g(t)y = h(t).

Jungle trick: make the left hand side look like a derivative.
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Linear equations

y ′ + g(t)y = h(t).

(eG(t)y)′ = eG(t)y ′ + eG(t)G ′(t)y = eG(t)h(t)

if G is a primitive function of g .

So

y =

∫
eG(t)h(t)dt

eG(t)
.
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Linear equations

The equation
y ′ + g(t)y = h(t).

has the solutions

y =

∫
eG(t)h(t)dt

eG(t)
.

eG(t) is called the integrating factor, where G (t) is any primitive
function of g(t)

One unknown constant, coming from the primitive function∫
eG(t)h(t)dt.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

First order separable ODE
First order linear ODE
Second order ODE

Linear equations

Example

Solve
y ′ +

y

t
= t2.

Integrating factor:

e
∫

dt
t = eln |t|+c = ec |t|.

Choose WLOG c = 0:

(|t|y)′ = |t|y ′ + |t|y
t

= |t|t2.

Multiply by −1 if t < 0, we get (ty)′ = t3.
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Linear equations

Example (Continued)

Solve
y ′ +

y

t
= t2.

(ty)′ = t3, so

ty =

∫
t3 dt =

t4

4
+ c ,

where c is a local constant.

y =

{
t3

4 + c1
t if t > 0

t3

4 + c2
t if t < 0

,

where c1 and c2 are arbitrary constants.
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Linear equations

Example

Solve
x2y ′ + y = 1,

where y(1) = 0.

Isolate y ′:

y ′ +
1

x2
y =

1

x2

Integrating factor:

e
∫

dx
x2 = e

−1
x +c

c=0︷︸︸︷
= e

−1
x .
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Linear equations

Example (Continued)

Solve
x2y ′ + y = 1,

where y(1) = 0.

(
e
−1
x y
)′

= e
−1
x y ′ +

e
−1
x

x2
y =

e
−1
x

x2
.

e
−1
x y =

∫
e
−1
x

x2
dx =

[
t = −1

x

dt = dx
x2

]
=

∫
etdt = et + c = e

−1
x + c .
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Linear equations

Example (Continued)

Solve
x2y ′ + y = 1,

where y(1) = 0.

y =
e
−1
x + c

e
−1
x

= 1− c

e
−1
x

= 1− ce
1
x .

0 = y(1) = 1− ce,

so c = e−1 (when x > 0.)
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Linear equations

Example (Continued)

Solve
x2y ′ + y = 1,

where y(1) = 0.

Solution:

y =

{
1− e

1
x−1 if x > 0

1− ce
1
x if x < 0

,

where c is an arbitrary constant.
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Free fall with air resistance

How do you solve a problem like

y ′′ − ky ′ + g = 0?

(k < 0)

Rewrite:
v ′ − kv + g = 0,

so we get a first order equation in the unknown v = y ′.
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Free fall with air resistance

v ′ − kv + g = 0,

where k < 0 is the (first order) air resistance coefficient.

Integrating factor
e
∫
−k dt = e−kt

(choose c = 0).

(
e−ktv

)′
= e−ktv ′ − ke−ktv = −e−ktg .

v =

∫
−e−ktg dt

e−kt
=

g

e−kt

(
e−kt

k
+ c

)
=

g

k
+ cekt .
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Free fall with air resistance

v ′ − kv + g = 0,

where k < 0 is the (first order) air resistance coefficient.

v =

∫
−e−ktg dt

e−kt
=

g

e−kt

(
e−kt

k
+ c

)
=

g

k
+ cekt .

y =

∫
v dt =

g

k
t + aekt + b

Here, a = c
k is a new unknown constant.
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Free fall with air resistance

y =

∫
v dt =

g

k
t + aekt + b

If no velocity when the fall starts, then

0 = v0 =
g

k
+ ak,

so a = − g
k2 .
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Free fall with air resistance

y =
g

k
t +

g

k2
ekt + b = b +

g

k

(
t +

ekt

k

)
.

Asymptotically as t →∞, the altitude is ≈ b + g
k t. (At least until

the poor guy hits the water surface, at which point the resistance
coefficient k changes dramatically.)
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Particular solutions

We would like to solve the linear equation

y ′′ + a(t)y ′ + b(t)y = h(t).

In this course, we will only consider second order equations with
constant coefficients

y ′′ + ay ′ + by = h(t).

We will first find one particular solution yp to the equation, and then
show how to get the general solution.
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Particular solutions

Task: find a particular solution to

y ′′ + ay ′ + by = h(t).

Idea: If h belongs to a nice class of functions that is closed under
derivatives, then it makes sense to look for y in the same class.

Examples:
cpt

p + cp−1t
p−1 + · · ·+ c0.

c0 cos t + c1 sin t.(
cpt

p + cp−1t
p−1 + · · ·+ c0

)
ex .
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Particular solutions

Example

Task: find a particular solution to

y ′′ − y ′ − 2y = cos t.

Ansatz:

y = a cos t+ b sin t

y ′ = b cos t− a sin t

y ′′ = −a cos t− b sin t
y ′′ − y ′ − 2y = (−3a− b) cos t+ (a− 3b) sin t
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Particular solutions

Example (Continued)

We assigned y = a cos t + b sin t.

Now

cos t = y ′′ − y ′ − 2y = (−3a− b) cos t + (a− 3b) sin t

{
−3a− b = 1
a− 3b = 0

=⇒
{

a = −3
10

b = −1
10

Particular solution:

yp =
−1

10
(3 cos t + sin t) .
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Particular solutions

Example

Task: find a particular solution to

y ′′ − y ′ + 2y = t2 − 1.

Ansatz:

y = at2+ bt+ c

y ′ = 2at+ b

y ′′ = 2a

y ′′ − y ′ + 2y = 2at2+ (−2a + 2b)t+ (2a− b + 2c)
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Particular solutions

Example (Continued)

We assigned y = at2 + bt + c .

Now

t2 − 1 = y ′′ − y ′ + 2y = 2at2 + (−2a + 2b)t + (2a− b + 2c)

 2a = 1
−2a + 2b = 0

2a− b + 2c = −1
=⇒


a = 1

2
b = 1

2
c = − 3

4

Particular solution:

yp =
t2

2
+

t

2
− 3

4
.
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Particular solutions

Example

Task: find a particular solution to

y ′′ − y ′ + 2y = e2t .

Ansatz:

y = ae2t

y ′ = 2ae2t

y ′′ = 4ae2t

y ′′ − y ′ + 2y = 4ae2t

4a = 1, so a particular solution is yp = 1
4e

2t .
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Particular solutions

Example

Task: find a particular solution to

y ′′ − y ′ − 2y = e2t .

Ansatz:

y = ae2t

y ′ = 2ae2t

y ′′ = 4ae2t

y ′′ − y ′ − 2y = 0e2t

So no particular solution of this form.
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Particular solutions

Example (Continued)

Task: find a particular solution to

y ′′ − y ′ − 2y = e2t .

New ansatz:

y = ate2t

y ′ = (2at + a)e2t

y ′′ = (4at + 4a)e2t

y ′′ − y ′ − 2y = 3ae2t

3a = 1, so a particular solution is yp = t
3e

2t .
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Particular solutions

Rule of thumb: Begin with the easiest Ansatz you can think of, and
add a factor only if the first one did not work.
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Homogeneous solutions

How do we find all solutions to the linear equation

y ′′ + ay ′ + by = h(t)?

If yp is one particular solution, and y is another solution, then y − yp
satisfies

(y − yp)′′ + a(y − yp)′ + b(y − yp) = 0
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Homogeneous solutions

Let yp be a particular solution of

y ′′ + ay ′ + by = h(t).

Let yh be a general solution of the homogeneous equation

y ′′ + ay ′ + by = 0.

Then a general solution of

y ′′ + ay ′ + by = h(t)

is given by yp + yh.
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Homogeneous solutions

Theorem

The space of solutions to y ′′ + ay ′ + by = 0 is two-dimensional.

Thus, if y1 and y2 are two different solutions, not constant multiples
of each other, then all solutions are given by

y = ry1 + sy2.

Proven in later courses.

Intuition: Need to take the primitive function twice, so we will get
two unknown constants.
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Homogeneous solutions

y ′′ + ay ′ + by = 0

If we find two solutions (not multiples of each other), then we find
all.

Inspired guess:
y = erx .

y ′′ + ay ′ + by = r2erx + arerx + berx = erx(r2 + ar + b).
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Characteristic equation

If r is a solution to the equation

r2 + ar + b = 0, (1)

then y = ert is a solution to the differential equation

y ′′ + ay ′ + by = 0. (2)

We call (1) the characteristic equation of (2).
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Characteristic equation

Three cases:

The characteristic equation has two distinct real roots:
r 2 − 3r + 2 = (r − 2)(r − 1).
The characteristic equation has two distinct complex roots:
r 2 + 1 = (r − i)(r + i).
The characteristic equation has a double root: r 2− 2r + 1 = (r − 1)2.
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Distinct real roots

Theorem

If r2 + ar + b = 0 has two distinct real roots r1 and r2, then all solutions
to

y2 + ay + b = h(t)

are given by
Aer1t + Ber2t + yp,

where A,B ∈ R, and yp is a particular solution.
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Distinct real roots

Example

Find all solutions to the equation

y ′′ − y ′ − 2y = e2t .

We found (with the ansatz y = atet) a particular solution yp = t
3e

2t .

The characteristic equation

0 = r2 − r − 2 =

(
r − 1

2

)2

− 1

4
− 2 =

(
r − 1

2

)2

−
(

3

2

)2

has the solutions r1 = 3
2 + 1

2 = 2 and r1 = − 3
2 + 1

2 = −1
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Distinct real roots

Example (Continued)

Find all solutions to the equation

y ′′ − y ′ − 2y = e2t .

The general solution is

yp + er1t + er2t =
t

3
e2t + Ae2t + Be−t ,

where A and B are arbitrary real constants.
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Distinct complex roots

Theorem

If r2 + ar + b = 0 has two distinct complex roots α + βi and α− βi ,
then all solutions to

y ′′ + ay ′ + by = h(t)

are given by
eαt(A cos(βt) + B sin(βt)) + yp,

where A,B ∈ R, and yp is a particular solution.
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Distinct complex roots

“Proof”:

e(α+βi)t = eαeβi = eαt(cos(βt) + i sin(βt))

and

e(α−βi)t = eαe−βi = eαt(cos(−βt) + i sin(−βt))

= eαt(cos(βt)− i sin(βt))

are solutions to the equation y ′′ + ay ′ + by = 0.

y is a weighted sum of

eαt(cos(βt) + i sin(βt)) and eαt(cos(βt)− i sin(βt))

if and only if it is a sum of

eαt cos(βt) and eαt sin(βt))

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations

First order separable ODE
First order linear ODE
Second order ODE

Distinct complex roots

Example

Find all solutions to the equation

y ′′ + 4y = t.

A particular solution is y = t
4 (seen by staring, or by assigning an

ansatz).

Characteristic equation:

r2 + 4 = 0⇐⇒ r = ±2i
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Distinct complex roots

Example (Continued)

Find all solutions to the equation

y ′′ + 4y = t.

Characteristic roots α± βi where α = 0, β = 2.

The general solution is

y = yp + Aeαt cos(βt) + Beαt sin(βt) =
t

4
+ A cos(2t) + B sin(2t),

where A and B are arbitrary real constants.

Ragnar Freij-Hollanti MS-A0111



Sequences and series
Derivatives

Integrals
Differential equations
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Second order ODE

Distinct complex roots

Example

The (damped) spring equation is x ′′ = −kx ′ − ω2x , where ω is the
spring constant and k < 2ω is a friction constant.

By tradition, the location is denoted by x = x(t).
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Distinct complex roots

Example (Continued)

x ′′ + kx ′ + ω2x = 0

Characteristic equation

r2 + kr + ω2 = 0.

Characteristic roots

r =
−k ±

√
k2 − 4ω2

2
=
−k
2
±
√

4ω2 − k2

2
i .
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First order linear ODE
Second order ODE

Distinct complex roots

Example (Continued)

x ′′ + kx ′ + ω2x = 0

The general solution is

x = e
−kt
2

(
C cos(t

√
4ω2 − k2) + D sin(t

√
4ω2 − k2)

)
,

where C and D are arbitrary real constants.
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Distinct complex roots

Example (Continued)

With standard trigonometry we can rewrite

x = e
−kt
2

(
C cos(t

√
4ω2 − k2) + D sin(t

√
4ω2 − k2)

)
= e

−kt
2 A sin(t

√
4ω2 − k2 + θ).

A =
√
C 2 + D2 is the initial amplitude, and θ = arcsin(C

A ) is a phase
shift.
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Double root

The most difficult case is when the characteristic equation
r2 + ar + b = (r − α)2 has a double root r1 = r2 = α.

Then, the set of solutions

Aer1t + Ber2t = (A + B)eαt

is one-dimensional, so we have not yet found all solutions.
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Double root

Assume r2 + ar + b = (r − α)2. Then 2α + a = 0.

Look at y = teαt .

y = t · eαt

y ′ = (tα +1) · eαt

y ′′ = (tα2 +2α) · eαt

y ′′ + ay ′ + by =
(
t(α2 + aα + b) + (2α + a)

)
· eαt = 0

So eαt and teαt are two different solutions to y ′′ + ay ′ + by = 0.
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Double root

Theorem

If r2 + ar + b = 0 has a double root α, then all solutions to

y ′′ + ay ′ + by = h(t)

are given by
eαt(A + Bt) + yp,

where A,B ∈ R, and yp is a particular solution.
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Example

Find a function y = y(t) such that y ′′ + 2y ′ + y = cos t and
y(0) = y ′(0) = 0.

Step 1: Find a particular solution of

y ′′ + 2y ′ + y = cos t.

(Forget about initial values for now.)

Step 2: Find the general solution of the homogeneous problem

y ′′ + 2y ′ + y = 0.

Step 3: Insert the initial values y(0) = y ′(0) = 0 to determine the unknown
parameters.
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Initial value problem

Example (Continued)

Step 1: Find a particular solution of y ′′ + 2y ′ + y = cos t.

Ansatz:

y = a cos t+ b sin t

y ′ = b cos t− a sin t

y ′′ = −a cos t− b sin t
y ′′ + 2y ′ + y = 2b cos t− 2a sin t

2b cos t +−2a sin t = cos t, so b = 1
2 , a = 0.

Particular solution: yp = sin t
2 .
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Example (Continued)

Step 2: Find the general solution of the homogeneous problem
y ′′ + 2y ′ + y = 0.

Characteristic equation r2 + 2r + 1 = (r + 1)2 = 0.

Characteristic double root α = −1.

General homogeneous solution: yh = e−t(At + B).

General solution:

y = yp + yh =
sin t

2
+e−t(At + B)

y ′ =
cos t

2
+e−t(−At − B + A).
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Initial value problem

Example (Continued)

Step 3: Insert the initial values y(0) = y ′(0) = 0 to determine the unknown
parameters.

0 = y(0) =
sin 0

2
+ e−0(A · 0 + B) = B,

so B = 0.

0 = y ′(0) =
cos 0

2
+ e−0(−A · 0− 0 + A) =

1

2
+ A,

so A = − 1
2 .
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Example (Conclusion)

Task: Find a function y = y(t) such that

y ′′ + 2y ′ + y = cos t

and y(0) = y ′(0) = 0.

Solution:

y =
sin t

2
− 1

2
te−t + 0 · e−t =

sin t − te−t

2
.
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