Classical machine learning for qguantum
materials

May 15" 2023



Today’s learning outcomes

* The relation between a many-body
wavefunction and a machine learning problem

* Why some methods for solving wavefunctions
can be used for machine learning

 Why methods from machine learning provide
Insights in phases of guantum materials



Outline

* Tensor-networks for quantum many-body wavefunctions

* Neural-networks for guantum many-body wavefunctions
- Exercise #1 for this week

Tensor-networks for supervised learning

Neural-networks for density functional theory

* Using machine learning for quantum materials
- EXxercise #2 for this week



Schedule

e 3 min pair discussion
* 15 min lecture

e 3 min pair discussion
* 15 min lecture

* 3 min pair discussion
10 min break

e 20 min lecture



Parametrizing many-body
wavefunctions with tensor
networks



Previously, In session 8: The

quantum Heisenberg dimer

What is the ground state of this quantum Hamiltonian?
H =S5y 51

The ground state is unique, and does not break time-reversal

—

GS)= L[ 1)~ ] Bh=0

The state is maximally entangled

_)
Can we have a macroscopic version of this ground state? < S z> — O



The guantum many-body problem

Let us go back to a simple many-body problem H = g Jz'j S@ . Sj
)

And let us imagine that we have L different sites on our system and S=1/2
For example, for L=2 sites the elements of the basis are

Tt T D

For L=3 sites the elements of the basis are

T T TN T
) T TN T



The guantum many-body problem

Let us go back to a simple many-body problem H = g Jz'j S@ . Sj
)

And let us imagine that we have L different sites on our system and S=1/2

For L=4 sites, the elements of the basis are
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The guantum many-body problem

Let us go back to a simple many-body problem H = g Jz'j S@ . Sj
)

And let us imagine that we have L different sites on our system and S=1/2

For a system of size L, what is the dimension of the Hilbert space?

Option #1 Option #2 Option #3

2L L2 2L



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
1)

A typical wavefunction is written as

‘\Ij> — Z Cs1,82,...,8L |817 52, ~'°SL>

We need to determine in total 2L coefficients

Is there an efficient way of storing so many coefficients?



Previously, in session 9: The matrix-

oroduct state ansaitz

For this wavefunction ‘\Ij> — 2031,32,...,31;’317 59, ...SL>

Let us imagine to propose a parametrization in this form

_ S1 S2 S3
Cop 5mnsy = MY M52 M7

" \

. . L
dimension 2 dimension "~ LD2

(D dimension of the matrix)



A controlled way of parametrizing

the Hilbert space

Sketch of the space parametrized with bond dimension D

Many-body Hilbert space

1d Area-law states

D = 10M20




The matrix product state
representation




Matrix product operators

Operators (like the Hamiltonian) can be represented in an analogous form

O Or

o, o

This is the Hamiltonian



Ground state calculations

To compute a ground state, we just have to minimize

WIH WY
g — \HY) E = (U|H|¥) — \(¥|¥)
(V|w)
This can be done by minimizing the energy with respect to each matrix
5E L Il e 1

L O S o &
ST ““®“$$46@6$

This algorithm is known as the density-matrix renormalization group




Generic tensor networks states

Tensor networks can be extended to deal with higher dimensional/critical systems

Matrix product Tree tensor Multiscale renormalization Projected-entangled
state network ansatz pair states

(this will be relevant later)



For discussion (3 min)

Given a matrix product state for a very specific wavefunction

Py =) M7 .. .M°"|o)

o

: Si . : :
Are the matrices [V “unique, or are there multiple matrix
product states consistent with the same wavefunction?

Can you give a one line demonstration of it?



Neural network guantum
states



The basics of deep neural networks

Deep neural networks are “general function approximators”

hidden layers

— output —
I
e/I; input o
layer
A deep neural network parametrices a function of the form f()\, a:) =Y

)\ Parameters of the function
T Input of the function



A hierarchy of variational methods

Mean-field Ji;Si - 8~ Ji(S5) - S5+ ..
Minimizing over product states (no entanglement) ’ T\H\T\H,TTiT>

Matrix product states ) = Z M ... M°|o)
o

Finite entanglement bounded by the bond dimension

Can we have more generic efficient variational wavefunctions for
systems intractable with the ones above?



The hierarchy of quantum states

Different variational states allow accessing different parts of the Hilbert space

Quantum
States _
MPS: matrix product states
PEPS: projected entanlged pair states
Neural

A Quantum
L States



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
1)

A typical wavefunction is written as

‘\Ij> — Z Cs1,82,...,8L |817 52, ~'°SL>

We need to determine in total 2L coefficients

Before we stored them in a tensor-network, but could we do in a neural-network?



Neural-network guantum states

Do not store the coefficient, but find the right function that generates them

681,82,....,8L — f(817 Sy eenny SL)

E

Deep neural network

The idea is similar as tensor networks, but exploiting a machine-learning architecture




Neural-network guantum states

iR EEED v«

How do we find the right neural network for the ground state?

‘\Ij> — 2681782 ..... SL‘817827 SL> 681,82 ...... ST, — f(817 827 cecey SL)



Neural-network guantum states

iR EEED v«

How do we find the right neural network for the ground state?

‘\Ij> — 2681782 ..... SL‘817827 SL> 681,82 ...... ST, — f(817 827 cecey SL)

Optimize the parameters of the network to minimize F =




Approximate expectation values

In general, we cannot exactly compute expectation values,
and a Monte Carlo method is required

_ Into two terms
Decompose this

A o — (T | 5)|°
(0) = <‘I’9\O\‘Iﬂ9> - e > (T | 8)f°
— Tg | Vo) Oloc(s) = Z <S|OA’S/> <<‘Z |‘ ;j;;

So that it can be expressed with a probability distribution

) 1 M |
Oy~ = Oe (sV) -~
M ; ( ) <O> = ZP(S)Oloc(S) — <OIOC(3)>P

Monte Carlo sampling s



Finding the ground state with neural

network guantum states

The Hamiltonian is expressed in local terms

E(0) = % ZEIOC (S(i)) EIOC(S) — Z<S’IA{’S>

S/

Gradient for minimization with back propagation

IE(6) 9

56, = 2Re [((Eroc(s) — (Bioc(s))) O5(8))]  Op(s) = = log (s | g) = <5 0,

)

~ 00,



Finding the ground state with neural

network guantum states

The variational principle implies that we need to <\P0|H’\I’9>
minimize the energy to find the ground state (9) — <\IJ9 | \119> > Ey

Iteratively minimize the energy until convergence is reached
OE(0)
a0,

E(6
Redefine the variational parameters for the next iteration 91()34‘1) = (9}(98) — 778 ( )

o 00,

Learning rate

Compute the energy and the gradient E(H)




Advantages of neural-network

quantum-states

* Not bounded by the area-law (suitable for 2D)

* Can directly use architectures and resources
developed for machine learning

e Certain architectures are equivalent to tensor-
networks (Boltzmann machines)



For discussion (3 min)

We have rewritten expectation value of an operator as
<é> = ZP(S)OIOC(S) = (Ooc(5)) p
with °

2

(T [ s)]

— - o _ _ |
> [(To | 5)] Why is it convenient to rewrite the expectation

) values in this form to perform Monte Carlo?
O1oc(s) = Z <S\O|s’> (' | o)
loc - <S | \Ij0>

S/

P(s)

What would happen if P(s) has an oscillating sign in (O) = Z P(s)O1oc(s)?

S



Machine learning with
neural networks



Some examples of machine learning

Supervised Generative Reinforcement
learning learning learning

G
E

o =
b

HDOgH

Labeled prediction Probability Modeling Reward-based decision

(and others)



The basics of deep neural networks

hidden layers

MANANAY
PR
The parameters are optimized to minimize a certain functional

X = LOSS[greal — gpredicted] — LOSS[?jreal — f(freal)]
‘2

output

Neural networks are a . layer
mnput

family of parametric functions layer

For example X 7 |g7rea1 — f(freal)



A simple classification problem

How to distinguish between two different
animals with an algorithm?



A simple classification problem

(14 CatH

(11 Dog 7




A simple classification problem

If we represent the image as a matrix, we just need to find the right function
L1

Qoo Qop. @02z Qo3 Qo4 Qo5 Qo6 AT
aip Qi1 @12 Qi3 Qai14 Q15 Q16 A17
Q20 G21 (22 A3 @24 d25 d26 d27 1
a3p @31 M@g2 a33 a34 G35 a036 A37 —_ —_
@40 41 @42 (43 Q44 Q45 Q46 Q4T a’/’ —_— e . C at”
as50 G51 @52 Gs3, Q54 @55 456 A57 1 y 1
aso Ge1 @2 A3 G4 U5 de6 AT O
arp Q71 @72 Qg3 Q74N A5 @76 A77
ago (gl @82 (83 As4 d85  Gs6 48T
290 Q91 @93 Qg3 d9a’ Ags Ggs Aot |

T2

@oo Aol Qo2 003, Qo4 Qo5 Goe Q07

a0 011 Q43 gdi3 O14 015 16 Q17

azo Q21 d92 W23 fdo4 fd25 QA2 d27

azp az1 a3z (33 (34 MA35 (36 37 O

@40 Q41 Q42 043 (44 045  Gae Q47 — —

@50 Gs1 G52 Q53 Q54 BF5  Gse Q57 a’; 2 J— 2 p— « "
ago Qg1 G2 A3 U4 €y Qe AgT Dog
aro GA71 4R, (73 dz4 Or5 e Ar7 1

ago agl (g2 (83 (g4 ag5 (g6 (87

| %90 Qg1 Q92 Qg3 94 QAg95 Adgs Q9T |

How do we find the function implementing this operation?



Supervised learning in a nutshell

hidden layers
[ |

Take a neural-network \'%‘}\\'f‘k'h ;’;‘;eput
\/ W v r
Input the image (NxXN matrix) input .:":/‘ \‘.‘""/ \‘,\""l’
Output a 2D vector layer DN XNON
ZNPIAY
R

After the minimization (training), the neural-network will be able to classify new examples



Using a tensor-network

to classif

Tensor-networks allow to parametrice high-dimensional functions
- S1 S2 S3
= M M. M;

Oy oL CS:[,SQ,....,SL
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘\IJ>:ZCSLSQ ,,,,, st |S1, 82, --SL)

Can we use tensor-network architectures “as if” they were neural networks?

Quantum many-body inspired machine learning

FA(x) = éwﬁ
£ in £ 2 |
d(x




Using a tensor- network




The fashion MNIST dataset
classmed with tensor-networks

Results

95.38% accuracy in training
88.97% accuracy in testing



Machine learning In
density functional theory



Previously, In session 9: Density

functional theor

Take the positions of all the atoms

. And find an “accurate” single-particle
effective Hamiltonian

Problem #1: There is an unknown part of the formalism (exchange correlation)
Problem #2: Solving the Kohn-Sham equations becomes too demanding for large systems

Two major challenges



The many-electron problem

The Hamiltonian for electrons in a solid

N N M N N
He = —= E Vi — > — + —
) J ~ L 7 ~ L Py
j=1 j=11=1 7 j=1k>j 7

Has an associated electronic density

o(r) = N/dS’r‘Q--'/dST‘N U (P, 72, ,TN)



The Hohenberg-Kohn theorem

For the ground state of a system, there is a one-to-one relation between
the electronic density and the many-body wavefunction (Hohenberg-Kohn theorem)

po < [¥)

The total energy can be written as a functional of the electronic-density
E(po)

The ground state energy can be computed if we know the functional (which we do not)



The Kohn-Sham equations

We do not know the “true” functional for density-functional theory
Let us take an “imaginary” non-interacting electron gas, with the same density as the real one

Fuk |p] = Ts[p] + J[p] + Exclp]

where
1 N
_ } : 2 Mean-field electronic is i -
Ty = _5 <¢j ‘V ’ ¢J> And this is approximated

— interaction (LDA, GGA, metaGGA, etc)
]:

Problem #1: We do not know the exchange-correlation functional, could it be machine learned?



The Kohn-Sham equations

Given a certain density-functional FKS (p)

An effective single-particle Hamiltonian must be solved, taking the form

HKS‘¢TL> — En‘wn>

Where the Hamiltonian is obtained as a functional derivative

oF
(Hics = €n)lYn) = 5775 =0




The Kohn-Sham equations

Define your crystal
(atomic positions)

V(r) p(r) ~ Hgs(p)

_gv
S
9‘ L s‘

KS eigenvectors

= )

Electronic density Hamiltonian

Problem #2: Solving the Kohn-Sham equations becomes too demanding for large systems



Machine learning the potential-

density functional

@—

@W— R
,.

w—

Potential Potential as Independent Density
Gaussians ML models

The neural network takes as input the potential, and as output the density



Machine learning the exchange-

correlation functional

In the Kohn-Sham equations
Flp] =Tlp| + Jlp| + Exc|p]

The exchange-correlation functional is approximated (LDA, GGA, metaGGA, etc)

Instead of using an approximation, the functional can also be encoded as a neural-network
_ 17NN
OF x o

0p

o NN ’
J— VXC p— VXC input layer

hidden layer 1  hidden layer 2




Using machine learning In
guantum materials



How use machine learning in combination

with conventional methods

* Phase classification in the Ising model (trivial)
and Ising gauge theory (non-trivial)

* Theoretical and experimental Hamiltonian
learning



The Ising model

Take the Ising model and evaluate realizations at
different temperatures

bbbt 0-0-0-b-t-b-4 b b bbb bbb bbb b 656000 b 8 b bbb b e
- 0-0-0-0-0-0-5-6-0-0-0-0-6-6  -9-6-0-0-0-8 . -6-6-0-0-0-0-4 o-0-9-0-0-3-0-9-0-0-0-0-9-5-8
$-9-9-0-9-0-0-9-9-0-9-9-0-0-9  $-9-0-0-9-0-0-9-9-0-0-9-9-0-5  $-9-9-0-9-9-9-9-9-9-0-9-9-9-9
prEtebiibebesbl pRerbibedieril biedidbedesies
$-9-9-0-0-0-0-9-0-0-9-9-0-0-9  §-90-0-0-9-0-0-0-9-0-0-9-9-0-9  -9-9-0-9-9-0-9-9-9-0-9-9-9-9
PriipTivobbaber  phiieiabosei Rbrboboibobies
-9-8-9-9-9-9-9-0-0-0-0-0-8-3  9-0-0-0-0-0-0-3-9-9-9-9-9-0-C $-9-9-9-9-9-0-0-0-9-0-0-0-0-
NS A AN AR A A P AR A S A A SN S AR AN AN AR S S (—

> T/T.
Temperature

(This is of course a very simple problem)



Classical phase transitions

Ordered Disordered
(ferromagnet) (paramagnet)

Critical temperature

Can we use machine learning

1

1

1

1

1

1

1

I

i to find phase transitions?
I _>
i

1

1

2D Ising model

el [ = —] Y 5,5
(i7)

Temperature



Classical phase transitions

Ordered Disordered

(ferromagnet) (paramagnet) H = J S;S
- — E iS5

Y S

Temperature

L.,.

We can use a “classification algorithm” as did before ‘
R e



Classical phase transitions

Output layer

".. A
15 2.0 2.5 3.0

T/

A neural-network learns to classify the two phases . \ T /

- —>
- —P
- —>
- —P



A more challenging case:

Topological phase transitions

Topological phase transitions do not have a local order parameter

Ising gauge theory H(o)=—-J Z H 0;

p t€p
At low temperatures, the ground state fufills | | O; = 1
1EP

plaquette p

At high temperatures, the constraint is not fufilled



Topologically different phase in Ising

plaguette p

T — 0 1T — o0
)

Low temperature and high temperature are topologically different, but the difference is not obvious
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Link sites with the same orientation. The constraint leads to all loops closed.



The problem of Hamiltonian learning

How can we go from observables to the Hamiltonian?

Our usual workflow during the course

Solve the Hamiltonian Compute an observable
H ~ (Y]|O]Y)
The problem we often find experimentally
Measure an observable Determine its Hamiltonian
(Y]|Ow) - H

How can we perform this task?



A computational example

How can we obtain a tight binding model from observables like

The band structure The Fermi surface at E=-2t

H = ZtijCICj
i7 g l .

Energy [t]




A computational example

How can we obtain a tight binding model from observables like

The band structure The Fermi surface at E=-2t

Energy [t]




Experimental Hamiltonian learning

Theory and experiment workflow Learning of the spin Hamiltonian

System ¢

i

Bayesian

) | inference
i
vy —» [ . [~ JJ

Simulator t, H(x)

Dynamics of an NV-center



* Methods to parametrize wavefunctions can be
used in machine learning

* Neural-networks allow parametrizing many-body
wavefunctions

* Machine learning methods can be combined with
conventional quantum materials methodologies
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