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Today’s learning outcomes
● The relation between a many-body 

wavefunction and a machine learning problem
● Why some methods for solving wavefunctions 

can be used for machine learning
● Why methods from machine learning provide 

insights in phases of quantum materials 



  

Outline
● Tensor-networks for quantum many-body wavefunctions
● Neural-networks for quantum many-body wavefunctions

– Exercise #1 for this week
● Tensor-networks for supervised learning
● Neural-networks for density functional theory
● Using machine learning for quantum materials

– Exercise #2 for this week



  

Schedule
● 3 min pair discussion
● 15 min lecture
● 3 min pair discussion
● 15 min lecture
● 3 min pair discussion
● 10 min break
● 20 min lecture



  

Sym

Parametrizing many-body 
wavefunctions with tensor 

networks



  

Previously, in session 8: The 
quantum Heisenberg dimer

What is the ground state of this quantum Hamiltonian?

The ground state is unique, and does not break time-reversal

The state is maximally entangled

Can we have a macroscopic version of this ground state?



  

The quantum many-body problem
Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For example, for L=2 sites the elements of the basis are

For L=3 sites the elements of the basis are



  

The quantum many-body problem
Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For L=4 sites, the elements of the basis are



  

The quantum many-body problem
Let us go back to a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For a system of size L, what is the dimension of the Hilbert space?

Option #1 Option #2 Option #3



  

The quantum many-body problem

Let us go back to a simple many-body problem

A typical wavefunction is written as 

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?



  

Previously, in session 9: The matrix-
product state ansatz

For this wavefunction

Let us imagine to propose a parametrization in this form

dimension
dimension

(D dimension of the matrix)



  

A controlled way of parametrizing 
the Hilbert space

Sketch of the space parametrized with bond dimension D



  

The matrix product state 
representation



  

Matrix product operators

Operators (like the Hamiltonian) can be represented in an analogous form

This is the Hamiltonian



  

Ground state calculations
To compute a ground state, we just have to minimize

This can be done by minimizing the energy with respect to each matrix

This algorithm is known as the density-matrix renormalization group



  

Generic tensor networks states
Tensor networks can be extended to deal with higher dimensional/critical systems

Multiscale renormalization
ansatz

Projected-entangled
pair states

(this will be relevant later)

Tree tensor
network

Matrix product
state



  

For discussion (3 min)

Given a matrix product state for a very specific wavefunction

Are the matrices            unique, or are there multiple matrix 
product states consistent with the same wavefunction?

Can you give a one line demonstration of it?



  

Sym

Neural network quantum 
states



  

The basics of deep neural networks
Deep neural networks are “general function approximators”

A deep neural network parametrices a function of the form

Parameters of the function
Input of the function



  

A hierarchy of variational methods

Mean-field

Minimizing over product states (no entanglement)

Matrix product states

Can we have more generic efficient variational wavefunctions for 
systems intractable with the ones above?

Finite entanglement bounded by the bond dimension



  

The hierarchy of quantum states

MPS: matrix product states

PEPS: projected entanlged pair states

Different variational states allow accessing different parts of the Hilbert space



  

The quantum many-body problem

Let us go back to a simple many-body problem

A typical wavefunction is written as 

We need to determine in total coefficients

Before we stored them in a tensor-network, but could we do in a neural-network?



  

Neural-network quantum states
Do not store the coefficient, but find the right function that generates them

Deep neural network

The idea is similar as tensor networks, but exploiting a machine-learning architecture



  

Neural-network quantum states

How do we find the right neural network for the ground state?



  

Neural-network quantum states

How do we find the right neural network for the ground state?

Optimize the parameters of the network to minimize



  

Approximate expectation values
In general, we cannot exactly compute expectation values,

and a Monte Carlo method is required 

Decompose this
Into two terms

So that it can be expressed with a probability distribution

Monte Carlo sampling



  

Finding the ground state with neural 
network quantum states

The Hamiltonian is expressed in local terms

Gradient for minimization with back propagation



  

Finding the ground state with neural 
network quantum states

Redefine the variational parameters for the next iteration

The variational principle implies that we need to 
minimize the energy to find the ground state

Learning rate

Compute the energy and the gradient

Iteratively minimize the energy until convergence is reached



  

Advantages of neural-network 
quantum-states

● Not bounded by the area-law (suitable for 2D)
● Can directly use architectures and resources 

developed for machine learning
● Certain architectures are equivalent to tensor-

networks (Boltzmann machines)



  

For discussion (3 min)
We have rewritten expectation value of an operator as 

with

Why is it convenient to rewrite the expectation 
values in this form to perform Monte Carlo?

What would happen if             has an oscillating sign in                                               ?        
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Machine learning with 
neural networks



  

Some examples of machine learning

Supervised
learning

Generative
learning

Reinforcement
learning

Labeled prediction Probability Modeling Reward-based decision

“Dog”

(and others)



  

The basics of deep neural networks

The parameters are optimized to minimize a certain functional

For example

Neural networks are a
family of parametric functions



  

A simple classification problem

How to distinguish between two different 
animals with an algorithm?



  

A simple classification problem

“Cat”

“Dog”



  

A simple classification problem
If we represent the image as a matrix, we just need to find the right function

“Cat”

“Dog”

How do we find the function implementing this operation?



  

Supervised learning in a nutshell

Take a neural-network
Input the image (NxN matrix)
Output a 2D vector

Take a few examples and minimize

After the minimization (training), the neural-network will be able to classify new examples



  

Using a tensor-network
to classify images

Tensor-networks allow to parametrice high-dimensional functions

Can we use tensor-network architectures “as if” they were neural networks?

Quantum many-body inspired machine learning



  

Using a tensor-network
to classify imagesx

2



  

The fashion MNIST dataset 
classified with tensor-networks

95.38% accuracy in training88.97% accuracy in testing
Results
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Machine learning in 
density functional theory



  

Previously, in session 9: Density 
functional theory

Take the positions of all the atoms

And find an “accurate” single-particle
effective Hamiltonian

Two major challenges

Problem #1: There is an unknown part of the formalism (exchange correlation)
Problem #2: Solving the Kohn-Sham equations becomes too demanding for large systems



  

The many-electron problem

The Hamiltonian for electrons in a solid

Has an associated electronic density



  

The Hohenberg-Kohn theorem
For the ground state of a system, there is a one-to-one relation between

the electronic density and the many-body wavefunction (Hohenberg-Kohn theorem)

The total energy can be written as a functional of the electronic-density

The ground state energy can be computed if we know the functional (which we do not)



  

The Kohn-Sham equations
We do not know the “true” functional for density-functional theory

Let us take an “imaginary” non-interacting electron gas, with the same density as the real one

where

And this is approximated
(LDA, GGA, metaGGA, etc)

Mean-field electronic
interaction

Problem #1: We do not know the exchange-correlation functional, could it be machine learned?



  

The Kohn-Sham equations

Given a certain density-functional

An effective single-particle Hamiltonian must be solved, taking the form

Where the Hamiltonian is obtained as a functional derivative



  

The Kohn-Sham equations
Define your crystal
(atomic positions)

Electronic density Hamiltonian

KS eigenvectors

Problem #2: Solving the Kohn-Sham equations becomes too demanding for large systems



  

Machine learning the potential-
density functional

The neural network takes as input the potential, and as output the density



  

Machine learning the exchange-
correlation functional

The exchange-correlation functional is approximated (LDA, GGA, metaGGA, etc)

In the Kohn-Sham equations

Instead of using an approximation, the functional can also be encoded as a neural-network



  

Sym

Using machine learning in 
quantum materials



  

How use machine learning in combination 
with conventional methods

● Phase classification in the Ising model (trivial) 
and Ising gauge theory (non-trivial)

● Theoretical and experimental Hamiltonian 
learning



  

The Ising model

Take the Ising model and evaluate realizations at 
different temperatures

(This is of course a very simple problem)



  

Classical phase transitions

Critical temperature

Can we use machine learning
to find phase transitions?

2D Ising model



  

Classical phase transitions

We can use a “classification algorithm” as did before



  

Classical phase transitions

A neural-network learns to classify the two phases



  

A more challenging case: 
Topological phase transitions

Topological phase transitions do not have a local order parameter

Ising gauge theory

At low temperatures, the ground state fufills

At high temperatures, the constraint is not fufilled



  

Topologically different phase in Ising 
gauge theory

Low temperature and high temperature are topologically different, but the difference is not obvious



  

Dual representation of the Ising 
gauge theory

Link sites with the same orientation. The constraint leads to all loops closed.



  

The problem of Hamiltonian learning
How can we go from observables to the Hamiltonian? 

Solve the Hamiltonian Compute an observable

Our usual workflow during the course

The problem we often find experimentally

Measure an observable Determine its Hamiltonian

How can we perform this task?



  

A computational example
How can we obtain a tight binding model from observables like

The band structure The Fermi surface at E=-2t



  

A computational example
How can we obtain a tight binding model from observables like

The band structure The Fermi surface at E=-2t



  

Experimental Hamiltonian learning
Learning of the spin HamiltonianTheory and experiment workflow

Dynamics of an NV-center



  

Take home
● Methods to parametrize wavefunctions can be 

used in machine learning
● Neural-networks allow parametrizing many-body 

wavefunctions
● Machine learning methods can be combined with 

conventional quantum materials methodologies
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