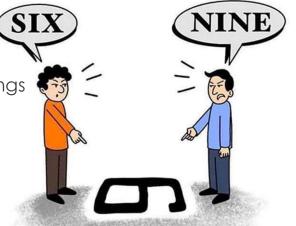
ARTS-L0112

### Philosophy of Science


12. Interdisciplinarity & Transdisciplinarity

TOMI KOKKONEN

TOMI.KOKKONEN@HELSINKI.FI

#### The Two Academic Cultures

- Natural sciences vs. Humanities and Social Sciences
  - ► Methodologically different? (e.g. explanation vs. understanding)
  - Methods develop for the needs of the research, the basic ideas are shared
  - ▶ The differences come from the different objects: nature vs. human reality
- The different paradigms of different fields (in general)
  - Shared background beliefs, practices and epistemic attitudes
  - ▶ Disciplinary identity, prejudices against different ways of doing things
  - Problems in understanding each other



# Ontological relations between disciplines



Social phenomena

Culture

Individual behaviour

Brain processes

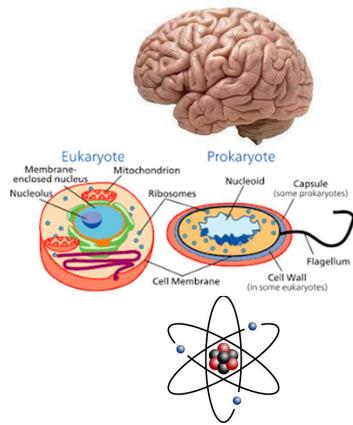
Biological processes

Chemical processes

Physical reality

Social sciences

**Humanities** 


Behavioural sciences

Neuroscience

**Bio-sciences** 

Chemistry

**Physics** 



#### The institutional structure of science

The institutional structure of science is conventional

- ► History, administrative needs
- "Basic sciences" are based on old ideas of the structure of reality

There are objects "between" disciplines, sometimes creating new ones

- Vertical: biochemistry, molecular biology, neuropsychology, psychiatry, cultural psychology, behavioural economics
- ▶ Horizontally: different fields in human sciences, different fields in biosciences

Practical use – applied science, technology

- Often require combination of knowledge
- Problems: the incommensurability of theories, lack of shared language, different beliefs about the object

#### An Example: Gender

- The everyday understanding of gender:
  - ▶ Two unambiguously distinct genders
  - Essentialism: the gender differences are explainable by the gender
  - The "naturalization" of the differences (they are "natural", hence unavoidable)
  - Chromosomes interpreted as "essence barers"

#### Biological SEX

▶ The object for biology and medicine

#### Socio-cultural GENDER

- ▶ The object of gener studies, humanities, and social sciences
- ► The social construction of gender: the cultural presentation, the mehcanisms behind it, and the social and cultural consequences

### Biological gender / sex

- Not a uniform concept
- The most common definition: the type of the sex cells (egg, sperm)
  - ▶ Male / female / no sex
- Genetic sex? (chromosomes)
  - ► The presence of Y-chomorsome triggers the male developmental channel (but not always: sometimes XX is male and XY female, and there are other combinations)
  - All phenotypic characteristics are guided by shared genes hormones activate a network of genes, which may vary between stages of development
- Gonadic sex: two testicles, two ovaries, or one of both



### Biological gender / sex

- Somatic sex
  - ▶ Primary sex characteristics (Intersex:  $1\frac{1}{2} 2\frac{1}{2}$  % of population)
  - Secondary sex characteristics: vast individual variation
- ▶ The different notions: different aspects of biological sex
- Gendered brain?
  - ▶ There are not two types, but there are clusters of characteristics that correlate on population level the significance is an open question
  - The gendered identification of one's own body? (seems to have a neural basis)



### Socio-cultural gender

- Gender roles as cultural construcions
  - ► Cultural representation: stereotypes
  - Social and normative expectations related to behaviour
  - ▶ Performance: how to present one's gender
- Gendering the social reality
  - ▶ Plays, professions, types of social interaction
  - ▶ The created differences in the environment (esp. in childhood)
- Gendered individual development
  - Interaction between biology and the environment
  - ▶ Looping effect: identification as man/boy or woman/girl guides behaviour and the objects of interest, and therefore the skills acquired, and the self-image



#### How do the different concepts meet?

- What are we searching for?
  - ► The general difference between biology and humanities: are we looking for universality (and explanations for it) or differences (and explanations for them)?
  - ► E.g. evolutionary psychology vs. cultural anthropology
  - ▶ All scientific disciplines study fragments, not the whole picture
- What creates individual differences?
  - Biology, upbringing, what else?
  - ▶ Complicated question, cannot be answered by one discipline
- What creates societal differences?
  - ► For example, the differences in salaries
  - ▶ Not the same question

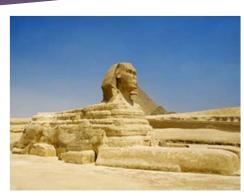


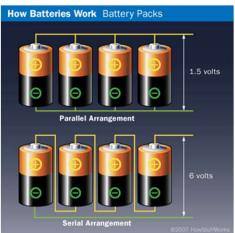
#### How do the different concepts meet?

- ▶ Gender is not a unified phenomenon our normative conceptions may be
  - Different biological concepts, social geneder, gender identity
  - ▶ How are the different aspects connected?
- What is transgender?
  - Gendered experience of body and identification are real psychological phenomena
  - Gendered socio-cultural identification
  - ► How to integrate subjective experience, facts about the biological body, and the surrounding socio-cultural reality? (a note: the sex correction is a genuine biological transformation)
  - ▶ Is there a biological foundation for transgender?
  - ▶ Other genders identification outside the socio-cultural gender norms?

#### Gender outside science

- ► The subjective experience
  - Science can only research possible biological correlates, the soico-cultural frameworks, and consequences of the identity
  - Art and artistic research?
- Public discourse
  - ▶ Protoscientific ideas vs. scientific conceptions vs. ideologies: values play a role
  - ▶ The debate is not only academic
  - Social norms about gender: binary, normative (unlike with other animals)
  - ▶ Is there a cultural break in the concept of gender and/or the phenomenon of socio-cultural gender?


## Interdisciplinarity: the epistemic promise


- Integrating different perspective: fuller picture
- Methodological harmonization: more reliable knowledge
  - ▶ Triangulation: different kinds of evidence from the same phenomenon
  - ► For example: chemical archeology
- Studying the phenomena "in between"
- Practical applications
  - For example: deploying technology successfully involves knowledge about psychology, practices, and the context of the deployment



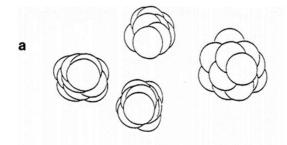
## Interdisciplinarity: the pragmatic challenges

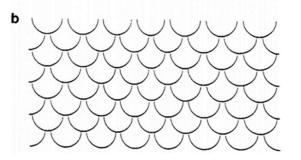
- How to overcome the differences between paradigms?
  - The incommensurablity of theories and concepts
  - Cf. the lecture on Kuhn
  - ▶ The inability to evalutate the evidence across the border
- "Fundamentality" does not help
  - ► E.g. how old is Sphinx?
  - Rain water erosion + the climate history: much older than thought?
  - Or: are there other causes for what looks like rain water erosion?
  - ► Emergence: "higher levels" may have properties not discovered yet by disciplines studying the "lower levels"
- How the research questions are related?
  - ▶ How to compare the answers given to them?





#### Unification, Integration, and Pluralism


- Unification: the goal of unified science
  - ▶ The reality is one: shouldn't science be too?
  - ▶ Theoretical testing of theories themselves: are they compatible?
  - Can this principle guide research?
  - Problems: often impossible in practice, and it can only be what the final science looks like (if even that)
- Pluralism
  - Different disciplines give different perspectives that are all just fragments – but knowledge nevertheless (Heleln Longino, upper)
  - ▶ Integratiive pluralism: different fragments interact locally: integration may be possible case by case (Sandra Mitchell, lower)






#### The Fish Scale Model

- Donald T. Campbell (1916–1996)
- ▶ The real "units" of science are even smaller than disciplines
  - ► The fields of specialization cover smaller areas that jointly cover the area the discipline is studying
  - ▶ There are areas not studied in between disciplines
  - We need a model that covers everything and doesn't depend on the disciplinary structure
  - ► Integration = the scales are overlapping, the relevant information flows in between
- ▶ The practical problem: the institutional disciplinary structure
  - ▶ Departments, educational programs, journals, careers





### Transdisciplinarity

- ► The different x-disciplinarities
  - Multidisciplinarity: joint work between several disciplinaries
  - ▶ Inerdisciplinarity: integrated work, combining theories and methods
  - Transdisciplinarity: transcending disciplinary borders, aiming at holistic view of the phenomenon, may include non-scientific approaches
- Examples:
  - Medical science: integration and collaboration between different roles
  - ▶ Integrating folk knowledge (e.g. agriculture, pain relief practices)
- A wider understanding of the problem by integrating non-academic perspectives

#### Transdisciplinarity and artistic research

- In art research:
  - ▶ The academic perspective + the artistic perspective
- In studying a subjective phenomenon:
  - ▶ Science "around" the phenomenon + artistic expression of the phenomenon
- Educational purposes:
  - Communication of the scientific contents or methods
- Mutual inspirational purposes
  - ► New perspectives
- What else?

#### The Essay

- ▶ What is the relationship between art and science? Possible perspectives:
  - ▶ Art as an object of research and what is the role of artistic research in this?
  - ▶ What art can tell that science cannot? Or the other way around?
  - ► How can art and science collaborate?
  - ▶ What is the "scientific status" of artistic research?
  - Are there analogies between doing science and creating art?
  - ▶ Are there some key differences between science and artistic research?