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Intended learning objectives
To be able to
Describe the design processes used for genetic circuits and metabolic
pathways.
Discuss the use computational design methods in applications



How fast
are cellular
processes
?

DOI:
10.1016/j.cell.2016.02.058



Genetic circuit
An assembly of biological parts encoded in the genome that enable
cells to respond and perform functions

The functions are realized through the Central Dogma of molecular
biology:

gene -> mRNA -> protein
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com.libproxy.aalto.fi/book/
10.1007/978-3-030-
52355-8



Truth table and circuit diagram
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https://doi.org/10.1515/
rnan-2015-0003
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Synthetic genetic circuits
• From sensory information to biological functions
• If a truth table is to be converted to DNA sequence,

What information/data/parts are needed?
Promoters, gates available, sensors, sequences,

What may be the challenges involved?
Truth table to circuit with the available parts



Reading material
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Steady state modelling: Nielsen et al. (2016) Genetic circuit design automation. Science.
352:aac7341. doi: 10.1126/science.aac7341. PDF to be provided in MyCourses
Dynamic modelling: Moser et al. (2018) Dynamic control of endogenous metabolism with
combinatorial logic circuits. Mol Syst Biol. 14:e8605.
https://www.embopress.org/doi/full/10.15252/msb.20188605



Challenges in circuit design
• Regulator expression need to be precisely balanced for correct

function
• Function of the parts can vary depending on genetic context, strain,

and growth conditions
• States of circuits (their response to different inputs) can be

cumbersome to characterize
• Many regulators are toxic when overexpressed, and even mild

effects can combine to drive negative selection against the circuit

doi: 10.1126/science.aac7341; pdf in MyCourses



Automated circuit design input

1. Description of the desired operation
2. DNA sequences of the parts (e.g., sensors, gates)
3. Data for the sensors (e.g., ON/OFF signal strengths)
4. Data for the gate library (e.g., response functions)
5. Conditions of validity: genetic system layout, strain, operating

conditions

doi: 10.1126/science.aac7341; pdf in MyCourses

Sensors    + Simple gates     -> Output promoter to control
the target function

From operation description to DNA sequence



Common signal carrier for
modularization
RNA polymerase flux on DNA
Output of a gate as input for next
Regulators could be transcription factors but
also others like e.g., CRISPR/Cas-based
regulation

NOT-gate

doi: 10.1126/science.aac7341; pdf in MyCourses

Promoter Promoter
Regulator



Response function
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NOT-gate
Response
function

RPU (relative promoter unit)
RBS (ribosome binding site)

doi: 10.1126/science.aac7341; pdf in MyCourses



Determining a gate response function
• Standard promoter: E. coli BBa_J23101 constitutive promoter, output of 1 RPU
• Fluorescence measured under a range of inducer concentrations from strains in

which
1. Fluorescence protein is expressed from the standard promoter <YFP>RPU
2. Autofluorescence control without fluorescence protein <YFP>0
3. Fluorescence protein is expressed from the input promoter
4. Gate controls fluorescence protein
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Example for strain 4, IPTG as inducer

doi: 10.1126/science.aac7341; pdf in MyCourses



Determining a gate response function
• Convert the fluorescence readouts to RPUs for both

1. Fluorescence protein is expressed from the input promoter
2. Gate controls fluorescence protein

• Plot output as a function of input at each concentration of inducer
• Fit Hill function to the response curve
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𝑅𝑃𝑈𝑖𝑛𝑝𝑢𝑡 =
𝑌𝐹𝑃 𝑖𝑛𝑝𝑢𝑡 − 𝑌𝐹𝑃 0
𝑌𝐹𝑃 𝑅𝑃𝑈 − 𝑌𝐹𝑃 0

𝑅𝑃𝑈𝑔𝑎𝑡𝑒 =
𝑌𝐹𝑃 𝑔𝑎𝑡𝑒 − 𝑌𝐹𝑃 0
𝑌𝐹𝑃 𝑅𝑃𝑈 − 𝑌𝐹𝑃 0

𝑦 = 𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝐾𝑛

𝐾𝑛 + 𝑥𝑛
where
n is the Hill coefficient
K is the threshold input level where the output is half maximum
ymin and ymax are the minimum and maximum output values from the
gate

doi: 10.1126/science.aac7341; pdf in MyCourses



Which combination makes a
functional circuit?

17doi: 10.1126/science.aac7341; pdf in MyCourses



Response functions are essential for
combining gates

18doi: 10.1126/science.aac7341; pdf in MyCourses



How to modulate the response
function?
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Brophy and Voigt, 2014;
https://www.nature.com/
articles/nmeth.2926



Genetic circuit design automation

doi: 10.1126/science.aac7341; pdf in MyCourses



Genetic circuit design automation

Modelling gate characteristics

Modelling circuit
performance +
optimization

doi: 10.1126/science.aac7341; pdf in MyCourses



Gate assignment is an
optimization problem
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𝑆 =
mi n( 𝑂𝑁)

ma x( 𝑂𝐹𝐹)

doi: 10.1126/science.aac7341; pdf in MyCourses

Gate assignments are scored:

Monte Carlo simulated annealing algorithm
is used for optimizing the gate assignment
A swap of two gates, then calculation of S’

𝑃 = 𝑒−((𝑆−𝑆′)/𝑇)
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The toxicity of the whole circuit for a particular input combination is calculated as the product of normalized cell
growth for each of the individual gates.
After the toxicities of all the input states are calculated, the toxicity of the circuit as a whole (“growth score”) is
taken as the worst input state.

doi: 10.1126/science.aac7341; pdf in MyCourses



Double-negative feedback loops in host-
circuit systems

https://doi.org/10.1371/journal.pcbi.1010518



From steady state models to dynamics
If circuit input is not switch like but dynamic, dynamic modelling is useful
for in silico screening of circuit designs
Gate response functions vs ODEs (in bold)
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NOT 𝑦 = 𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝐾𝑛

𝐾𝑛 + 𝑥𝑛

𝒅𝒚
𝒅𝒕

= 𝜶 𝒚𝒎𝒂𝒙 − 𝒚𝒎𝒊𝒏
𝑲𝒏

𝑲𝒏 + 𝒙(𝒕)𝒏 − 𝜸 𝒚 𝒕 − 𝒚𝒎𝒊𝒏

AND 𝑦 = 𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝑥1𝑥2

2

𝐾 + 𝑥1𝑥2
2

𝒅𝒚
𝒅𝒕

= 𝜶 𝒚𝒎𝒂𝒙 − 𝒚𝒎𝒊𝒏
𝒙𝟏(𝒕)𝒙𝟐(𝒕)𝟐

𝑲 + 𝒙𝟏(𝒕)𝒙𝟐(𝒕)𝟐 − 𝜸 𝒚 𝒕 − 𝒚𝒎𝒊𝒏

ANDN 𝑦 = 𝑦𝑚𝑖𝑛 + 𝑥1 − 𝑦𝑚𝑖𝑛
𝐾

𝐾 + 𝑥2

𝒅𝒚
𝒅𝒕

= 𝜶 𝒙𝟏(𝒕) − 𝒚𝒎𝒊𝒏
𝑲

𝑲 + 𝒙𝟐(𝒕)
− 𝜸 𝒚 𝒕 − 𝒚𝒎𝒊𝒏

Parameters from the
response function
Rate constants α and γ of
turning the gate ON and OFF,
respectively, 1/h (Tabor et al.
2009; Moon et al. 2012)

Adopted from: Moser et al. (2018) Mol Syst Biol. 14:e8605. doi: 10.15252/msb.20188605.



Glucose, oxygen and acetate sensors’ controlled
circuit dynamics predicted for E. coli batch culture
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Adopted from: Moser et al. (2018)
Mol Syst Biol. 14:e8605. doi:
10.15252/msb.20188605.

• ODE system solved
discretely

• In each time step,
the corresponding
empirical values for
the output activity of
glucose, oxygen,
and acetate sensors
were assigned to the
inputs
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Metabolic modelling



Orth JD, Thiele I, Palsson BO (2010) What is flux balance
analysis? Nat Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.
Box 2 outdated, check instead for COBRA toolbox, COBRApy,
COBRA.jl: http://opencobra.github.io/
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Why is metabolism relevant for synthetic biology?

Metabolism = (bio)chemical reactions involved in sustaining a living state of
cells and an organism

• Metabolism generates precursors for product compounds but also for
circuit components

• Metabolism generates energy and redox power
• Metabolism is involved in cellular regulation

Wikipedia



Metabolism is involved in cellular regulation

Nutrients

Metabolism
Sensing of

nutritional state
Signaling

Gene expression and
protein function

Phenotype

Adopted from Jaakko Mattila



Genome-scale metabolic
network of Baker’s yeast

Metabolic state = metabolic phenotype, loosely defined, fluxes and
metabolite concentrations or just the state of some specific feature



Genome-scale metabolic model reconstruction
Which reactions can take place in the cells of a species?



Genome-scale metabolic model reconstruction
Which reactions can take place in the cells of a species?

1. Genome sequencing and
assembly

2. Gene prediction
3. Protein functional annotation

Using information from
orthologous genes (i.e.,
diversified via speciation)

http://eggnog-mapper.embl.de/



Genome-scale metabolic model reconstruction
Conversion into mathematcal form

1. Unifying metabolite naming
across reactions

2. Gathering reaction
stoichiometries

3. Converting into matrix
[metabolites x reactions]

doi.org/10.3389/fmicb.2016.00907



Genome-scale metabolic model reconstruction
Considering steady state operation
1. Considering steady state operation

assumes constant metabolite
concentrations and fluxes

2. System of linear equations with
fluxes as variables is formed

3. The linear equations enforce mass
conservation and flux bounds can
be set to obey thermodynamic
feasibility

𝑑𝒄
𝑑𝑡

= 𝑺 ȉ 𝒗 = 𝑺 ȉ 𝒇(𝒆 𝑡 , 𝒄 𝑡 , 𝒛)

𝑺 ȉ 𝒗 = 𝟎 =

Dynamic situation

Steady state

S stoichiometric matrix, c concentrations,
v fluxes, e enzyme abundances, z parameters

= Constraints for metabolic states in specific cells
formulated from first-principles

doi.org/10.3389/fmicb.2016.00907



Space of feasible metabolic states
Fluxes variables, metabolites not in the steady state system

Figure modified by
Tuula Tenkanen
from O’Brien et al.
2015

Number of metabolites (equations) < number of fluxes (variables) =
underdetermined system



Linear optimization to identify optimal states

Figure modified by
Tuula Tenkanen
from O’Brien et al.
2015

Flux Balance Analysis (FBA)
Varma and Palsson, 1993; Varma and Palsson, 1994

maximize (or minimize) 𝒂′ ȉ 𝒗

subject to 𝑺 ȉ 𝒗 = 0
𝒗lb < 𝒗 < 𝒗ub

S stoichiometric matrix
𝒂 objective coefficients
𝒗 fluxes (specific rates)
𝒗lb flux lower bounds
𝒗ub flux upper bounds



Artificial reactions forming biomass allow
growth simulations
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Biomass forming
reaction(s)

Artificial reactions that are included
in the model to enable simulations
of growth

O'Brien EJ, Monk JM, Palsson BO. (2015) Cell. 161:971-987. doi: 10.1016/j.cell.2015.05.019.



Metabolic states depend on environment
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Including biomass

Growth medium

O'Brien EJ, Monk JM, Palsson BO. (2015) Cell. 161:971-987. doi: 10.1016/j.cell.2015.05.019.



Genome-scale metabolic model applications?
Prediction of metabolic phenotypes from genotype

1. Prediction of true (= optimal growth) metabolic states on different
nutrients

2. Prediction of optimal product yields
3. Strain design to improve production
4. …



In silico design of engineering strategies
using genome-scale metabolic models

Jouhten P. et al. Metab Eng. (2017)

Growth-product coupling
Algorithms use model simulations for identifying
knock-out targets
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Push-pull strategies
Algorithms use model simulations for identifying deletion and
re-regulation targets

Jouhten P. et al. unpublished work with Kiran Patil, EMBL Heidelberg

Current
phenotype

Optimized
phenotype

• Growth-product coupling: the cells can only grow if they produce
• Push-pull strategies: expression levels are modified to push and

pull more resources to product synthesis



Synthetic pathway design

43Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



Pathway generation

• A retrosynthesis (routes from desired compound back to precursors)
problem

• Known biochemical reactions are available in databases like Kegg,
Metacyc, Rhea

• Potential reactions that enzymes could also catalyze can be
computationally designed

44Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



Potential enzyme catalyzed
reactions may follow rules
of known reactions
• Reaction rules model known reactions
• Prediction of potential reactions assume that the

core of the reaction (where the bonds break)
remains the same

• Define different dimensions of the core
• Extended metabolic space is formed of

endogeneous and potential reactions (given a
specific dimension)

Retropath "reaction signatures”
Molecular signature

Atomic
signature

Reaction signature

Carbonell, P., Planson, A.-G., Fichera, D., & Faulon, J.-L. (2011). BMC Systems Biology, 5(1), 122.

atomic signature for each atom

collected for all
atoms and
sorted

net difference between the products and the substrates

Extended metabolic space (height = dimension)
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Finding enzymes

• The reactions are realized through the Central Dogma:
gene -> mRNA -> protein

• Known reactions: sequence and structure similarity-based search
using known sequences as seeds

• Potential reactions: reaction rules can be used for identifying seed
sequences that may encode also the desired activity (due to
promiscuity)

Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



Novel protein design is coming within reach
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AlphaFold by DeepMind is a breakthrough in natural protein folding prediction

https://www.deepmind.com/research/highlighted-research/alphafold



Synthetic pathway design
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• Criteria e.g., theoretical yield, thermodynamics of reactions, pathway
length, number of new-to-nature reactions, toxicity

• Prediction of performance within native metabolism using genome-
scale metabolic models

Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.




