(Practical Quartum Computing

Lecture 09

Quantum Arithmetic: Binary and Fourier



Ancilla qubit - “Scratch work”

e used to support the computation il 7 . B il
e usually initialised in [0> 3 Ur : Uit :
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By gar (z), we mean garbage depending on z: that is, “scratch work” that a reversible compu-
tation generates along the way to computing some desired function f(z). Typically, the garbage
later needs to be uncomputed. Uncomputing, a term introduced by Bennett [7], simply means
running an entire computation in reverse, after the output [ (z) has been safely stored.

[7] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Develop-
ment, 17:525 532, 1973.



Fredkin and Toffoli

Fredkin gates preserve the number of 1s

Toffoli gates do not preserve the number of 1

FANOUT »>x X
v .‘C@}'

X 1 X
J - 3 4
7 @

https://arxiv.org/pdf/1110.2574.pdf

110 -> 111

i ¢ y
y X

CNOT
(b) SWAP
x
y X X
xy®Dz ¥ x®y=sum
Toffoli z ARy
(c) Peres / Half-adder

Fredkin




One’s complement

Obtained by inverting all the bits in the binary representation
of the number

Negative numbers are represented by the inverse of the
binary representations of their corresponding positive
numbers

An N-bit ones' complement numeral system

e represent integers in the range —(2¥'-1) to 2N"1-1
e two's complement can express -2V to 2N"1-1

8-bit ones'-complement integers

. Ones'
. Unsigned
Bits + 4 complement
value

value
0111 1111 127 127
0111 1110 126 126
0000 0010 2 2
0000 0001 1 1
0000 0000 0 0
1111 1111 255 -0
111 1110 | 254 1
1111 1101 253 -2
1000 0001 129 -126
1000 0000 128 —A2F




Two’s complement

Defined as its complement with respect to 2N

e calculated by inverting the bits and adding one
e Forexample,

o the two's complement of 110 is 010

o because 010+ 110=8

Take the ones' complement and add one:

e the sum of a number and its ones' complement is all '1' bits,
or2N - 1;
e the sum of a number and its two's complement is 2N

Subtraction: The advantage of using two's complement is
the elimination of examining the signs of the operands to
determine whether addition or subtraction is needed

Eight-bit signed integers

Decimal _
¥
value

Two's-complement
representation

0000 0000

0000 0001

0000 0010

0111 1110

0111 1111

1000 0000

1000 0001

1000 0010

1111 1110

1111 1111




Half and Full Adder

The half adder

e adds two single binary digits A and B
e has two outputs, sum (S) and carry (C)
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A one-bit full-adder

Carry Out

Sum

adds three one-bit numbers

A and B are the operands, and Cin is a bit
carried in from the previous less-significant
stage

has two outputs, sum (S) and carry (C)
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CNOT, Toffoli and Fredkin gates for addition
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p @ p These are Fredkin gates

q ‘ ‘ q parity g carry
r AV X carry

sum
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The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.

X symbol is for the X-gate
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CNOT, Toffoli and Fredkin gates for addition
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X symbol is for the X-gate })\
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The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.
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CNOT, Toffoli and Fredkin gates for addition
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X symbol is for the X-gate
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parity g carry
q ‘ q p ‘q 'r 0 1r 1r
0 0 0 0 1 0 1
I carry 0 0 1 1 0 0 1
sum 0 1 0 1 0 0 0
0 . ari 0 1 1 0 1 1 1
X >< Py, 1 0 0 1 0 0 0
1 0 1 0 1 1 1
1 X N g 1 1 0 0 1 0 1
1 1 1 1 0 0 1

The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.
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CNOT, Toffoli and Fredkin gates for addition

if)
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X symbol is for the X-gate

AUVD
Il
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p L 4 p These are Fredkin gates
parity g carry

q @ @ q = F ; . in B

0 0 0 0 1 0 1
5 N

r ¥ carry 0 0 1 1 0 0 1
sum 0 1 0 1 0 0 0
0 - 0 1 1 0 1 1 1
X >< pariy; 1 0 0 1 0 0 0
1 0 1 0 1 1 1
1 >< KK g 1 1 0 0 1 0 1
1 1 1 1 0 0 1

The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.
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Ripple-Carry Addition

0 =co—M co b agp U0

bo— A bo & ag MF-so x; 7
ap—{ JHM c) b ay UHA}Vao . -
b A by ®ay M 51 0+
ay J M co @ ay UHA ay

by A by @ as M 59

as JHM c3 D as UHA as

b3 A b3 @ a3 M 53

as JHM c4 D ay UHA as

by A by b ay M sS4

ay JHM}-cs b as UHA a4

bs Ap-bs & as M S5

as JIF ¢ A as

z z D z @ s

Figure 4: A simple ripple-carry adder for n = 6.

https://arxiv.org/pdf/quant-ph/0410184.pdf
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Ripple-Carry Addition
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Figure 1: The in-place majority gate MAJ
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Modular Addition
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FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is
recorded into the temporary qubit [t). The next network calculates (a + b) mod N. At this stage we have extra information

about the value of the overflow stored in [t). The last two blocks restore

L) to |0). The arrow before the third plain adder

means that the first register is set to |0) if the value of the temporary qubit [t) is 1 and is otherwise left unchanged (this can
be easily done with Control-NOT gates, as we know that the first register is in the state |[N)). The arrow after the third plain
adder resets the first register to its original value (here |N)). The significance of the thick black bars is explained in the caption

of Fig. 2.

https://arxiv.org/pdf/quant-ph/9511018.pdf



Modular Addition
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the most significant bit of the = = = >
second register indicates whether = -~ = a+b I b = a+b
or not an overflow occurred in the =

mod N mod N

subtraction, i.e. whether a+b is
smaller than N or not.

Rl

FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is
recorded into the temporary qubit [t). The next network calculates (a + b) mod N. At this stage we have extra information
about the value of the overflow stored in [t). The last two blocks restore [t) to |0). The arrow before the third plain adder
means that the first register is set to |0) if the value of the temporary qubit [t) is 1 and is otherwise left unchanged (this can
be easily done with Control-NOT gates, as we know that the first register is in the state |[N)). The arrow after the third plain
adder resets the first register to its original value (here |N)). The significance of the thick black bars is explained in the caption

of Fig. 2.

https://arxiv.org/pdf/quant-ph/9511018.pdf



Quantum Fourier Transform

Binary representation of ais anan_1---asaq
ag=a,2""1+ @, 12%2 & ... +igs2t + ai2°

The Fourier transformation of a is generating an unentangled state
|

a2, QL_ S e(ak/2m)[k).

which using k=0

= —1 ela =
Ok (a)) = \/§(|0>+ 2(a/27)(1)).
can be expressed as
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S e(ak/2")k) = [6a(a) @ - @ [9a(a)) © |1 (a).
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Quantum Fourier Transformation
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https://arxiv.org/pdf/quant-ph/0008033.pdf



Quantum Fourier Addition
Transform Addition
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|$n-1(a)) (1) - 02D - |$n-1(a+b))
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Quantum Fourier Addition vs. Bennett trick
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