Practical Quantum Computing

Lecture 09 Quantum Arithmetic: Binary and Fourier

Reversibility and the Bennett trick

Ancilla qubit - "Scratch work"

- used to support the computation
- usually initialised in |0>
- before end of circuit its state to be |0>

Uncomputation and Reversibility

By gar (x), we mean garbage depending on x: that is, "scratch work" that a reversible computation generates along the way to computing some desired function f(x). Typically, the garbage later needs to be *uncomputed*. Uncomputing, a term introduced by Bennett [7], simply means running an entire computation in reverse, after the output f(x) has been safely stored.

[7] C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and Development, 17:525–532, 1973.

Fredkin and Toffoli

https://arxiv.org/pdf/1110.2574.pdf

One's complement

Obtained by inverting all the bits in the binary representation of the number

Negative numbers are represented by the inverse of the binary representations of their corresponding positive numbers

An N-bit ones' complement numeral system

- represent integers in the range $-(2^{N-1}-1)$ to $2^{N-1}-1$
- two's complement can express -2^{N-1} to $2^{N-1}-1$

8-bit on	es'-comple	ement	integers
----------	------------	-------	----------

Bits 🜩	Unsigned value	Ones' complement ÷ value
0111 1111	127	127
0111 1110	126	126
0000 0010	2	2
0000 0001	1	1
0000 0000	0	0
1111 1111	255	-0
1111 1110	254	-1
1111 1101	253	-2
1000 0001	129	-126
1000 0000	128	-127

Two's complement

Defined as its complement with respect to 2^N

- calculated by inverting the bits and adding one
- For example,
 - the two's complement of 110 is 010
 - because 010 + 110 = 8

Take the ones' complement and add one:

- the sum of a number and its ones' complement is all '1' bits, or 2^N - 1;
- the sum of a number and its two's complement is 2^N

Subtraction: The advantage of using two's complement is the elimination of examining the signs of the operands to determine whether addition or subtraction is needed

Decimal ¢value	Two's-complement representation	
0	0000 0000	
1	0000 0001	
2	0000 0010	
126	0111 1110	
127	0111 1111	
-128	1000 0000	
-127	1000 0001	
-126	1000 0010	
-2	1111 1110	
-1	1111 1111	

Half and Full Adder

The half adder

- adds two single binary digits A and B
- has two outputs, sum (S) and carry (C)

A one-bit full-adder

- adds three one-bit numbers
- A and B are the operands, and Cin is a bit carried in from the previous less-significant stage
- has two outputs, sum (S) and carry (C)

g

The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.

g

The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.

g

The "g" garbage output bit is (p NOR q) if r=0, and (p NAND q) if r=1.

Ripple-Carry Addition

Figure 4: A simple ripple-carry adder for n = 6.

https://arxiv.org/pdf/quant-ph/0410184.pdf

Ripple-Carry Addition

 $MAJ(a_i, b_i, c_i) = a_i b_i \oplus a_i c_i \oplus b_i c_i.$

Figure 1: The in-place majority gate MAJ

Figure 3: Combining the MAJ and UMA gates

https://arxiv.org/pdf/quant-ph/0410184.pdf

Modular Addition

FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is recorded into the temporary qubit $|t\rangle$. The next network calculates $(a + b) \mod N$. At this stage we have extra information about the value of the overflow stored in $|t\rangle$. The last two blocks restore $|t\rangle$ to $|0\rangle$. The arrow before the third plain adder means that the first register is set to $|0\rangle$ if the value of the temporary qubit $|t\rangle$ is 1 and is otherwise left unchanged (this can be easily done with Control-NOT gates, as we know that the first register is in the state $|N\rangle$). The arrow after the third plain adder resets the first register to its original value (here $|N\rangle$). The significance of the thick black bars is explained in the caption of Fig. 2.

https://arxiv.org/pdf/quant-ph/9511018.pdf

Modular Addition

FIG. 4. Adder modulo N. The first and the second network add a and b together and then subtract N. The overflow is recorded into the temporary qubit $|t\rangle$. The next network calculates $(a + b) \mod N$. At this stage we have extra information about the value of the overflow stored in $|t\rangle$. The last two blocks restore $|t\rangle$ to $|0\rangle$. The arrow before the third plain adder means that the first register is set to $|0\rangle$ if the value of the temporary qubit $|t\rangle$ is 1 and is otherwise left unchanged (this can be easily done with Control-NOT gates, as we know that the first register is in the state $|N\rangle$). The arrow after the third plain adder resets the first register to its original value (here $|N\rangle$). The significance of the thick black bars is explained in the caption of Fig. 2.

https://arxiv.org/pdf/quant-ph/9511018.pdf

Quantum Fourier Transform

Binary representation of **a** is $a_n a_{n-1} \cdots a_2 a_1$

$$a = a_n 2^{n-1} + a_{n-1} 2^{n-2} + \dots + a_2 2^1 + a_1 2^0$$

The Fourier transformation of **a** is generating an unentangled state

$$|a\rangle \xrightarrow{F_{2^n}} \frac{1}{2^{\frac{n}{2}}} \sum_{k=0}^{2^n-1} e(ak/2^n) |k\rangle.$$

which using

$$|\phi_k(a)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e(a/2^k)|1\rangle).$$

can be expressed as

$$\sum_{k=0}^{2^n-1} e(ak/2^n) |k\rangle = |\phi_n(a)\rangle \otimes \cdots \otimes |\phi_2(a)\rangle \otimes |\phi_1(a)\rangle.$$

Quantum Fourier Transformation

https://arxiv.org/pdf/quant-ph/0008033.pdf

Quantum Fourier Addition

Quantum Fourier Addition vs. Bennett trick

