
Practical Quantum Computing

Lecture 11
CHP, Surface Code

Using on Fowler AG, Mariantoni M, Martinis JM, Cleland AN. Surface codes: Towards practical large-scale quantum computation. 
Physical Review A. 2012 Sep 18;86(3):032324. and slides from Aaronson

https://www.scottaaronson.com/talks/chp.ppt


1. Controlled-NOT
|00〉🡪|00〉, |01〉🡪|01〉, 
|10〉🡪|11〉, |11〉🡪|10〉

2. Hadamard |0〉🡪(|0〉+|1〉)/√2
|1〉🡪 (|0〉-|1〉)/√2

3. Phase  = |0〉🡪|0〉, |1〉🡪i|1〉
1 0

0 i

4. Measurement of a single qubit  

Stabilizer Circuits



X2=Y2=Z2=I XY=iZ YZ=iX ZX=iY
XZ=-iY ZY=-iX YX=-iZ

Unitary matrix U stabilizes a quantum state |ψ〉 
if U|ψ〉 = |ψ〉.  Stabilizers of |ψ〉 form a group

X stabilizes |0〉+|1〉 -X stabilizes |0〉-|1〉
Y stabilizes |0〉+i|1〉 -Y stabilizes |0〉-i|1〉
Z stabilizes |0〉 -Z stabilizes |1〉

1 0

0 1

1 0

0 -1I = Z =
0 1

1 0X =
0 -i

i 0Y =

Pauli Matrices



If |ψ〉can be produced from the all |0> state of length n by just
● CNOT
● Hadamard
● and phase gates
then |ψ> is stabilized by 2n tensor products:
● of Pauli matrices
● or their opposites 
● where n = number of qubits

The stabilizer group is generated by log(2n) = n such tensor products
Indeed, |ψ〉is then uniquely determined by these generators
We call |ψ〉a stabilizer state

Gottesman-Knill Theorem



Goal: Using a classical computer, simulate an n-qubit CNOT/Hadamard/Phase 
computer.

Gottesman & Knill’s solution: Keep track of n generators of the stabilizer group
Each generator uses 2n+1 bits: 2 for each Pauli matrix and 1 for the sign. 

So n(2n+1) bits total

Example:

But measurement takes O(n3) steps by Gaussian elimination

+XX
-ZZ

|01〉+|11〉 |01〉+|10〉CNOT(1🡪2)

+XI
-IZ Updating stabilizers 

takes only O(n) steps

CHP Simulator



Idea: Instead of n(2n+1) bits, store 2n(2n+1) bits
• n stabilizers S1,…,Sn, 2n+1 bits each
• n “destabilizers” D1,…,Dn 

Maintain the following invariants:
● Di’s commute with each other
● Si anticommutes with Di
● Si commutes with Dj for i≠j

Together 
generate 
full Pauli 
group

CHP Simulator

https://arxiv.org/pdf/quant-ph/0406196.pdf
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Destabilizers
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+XI
+IX
+ZI
+IZ

xij bits zij bits ri bits

I: xij=0, zij=0 + phase: ri=0
X: xij=1, zij=0 - phase: ri=1
Y: xij=1, zij=1
Z: xij=0, zij=1
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D1
D2

Example

State: |00〉
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State: |00〉

Hadamard on qubit a: 

For all i∈{1,…,2n}, swap xia with zia, and set
ri := ri ⊕ xiazia
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State: |00〉+ |10〉

Hadamard on qubit a: 

For all i∈{1,…,2n}, swap xia with zia, and set
ri := ri ⊕ xiazia
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State: |00〉+ |10〉

CNOT from qubit a to qubit b: 

For all i∈{1,…,2n}, set xib := xib ⊕ xia and
zia := zia ⊕ zib
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Phase on qubit a: 

For all i∈{1,…,2n}, set ri := ri ⊕ xiazia, then set
zia := zia ⊕ xia
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xij bits zij bits ri bits
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Destabilizers

Stabilizers

State: |00〉+ i|11〉

Phase on qubit a: 

For all i∈{1,…,2n}, set ri := ri ⊕ xiazia, then set
zia := zia ⊕ xia
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State: |00〉+ i|11〉

Measurement of qubit a: 

If xia=0 for all i∈{n+1,…,2n}, then outcome will be deterministic.  
Otherwise 0 with ½ probability and 1 with ½ probability.
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Random outcome:
Pick a stabilizer Si such that xia=1 and set Di:=Si.  Then set Si:=Za and 
output 0 with ½ probability, and set Si:=-Za and output with ½ probability, 
where Za is Z on ath qubit and I elsewhere.  Finally, left-multiply whatever 
rows don’t commute with Si by Dixs



Obtain deterministic measurement outcomes in only O(n2) steps, without using 
Gaussian elimination

Za (Z on qubit a and I everywhere else) commutes with the stabilizers

and Za is a linear combination for a unique choice of c1,…,cn∈{0,1}

Determine ci’s, then by summing corresponding Sh’s we learn sign of Za

So just have to check if Di commutes with Za, or equivalently iff xia=1

Using destabilizers for O(n2) measurement



Surface Code

The surface codes

● evolved from an invention of Alexei Kitaev 
● known as toric codes
● efforts to develop simple models for topological order
● using qubits distributed on the surface of a toroid

The toroidal geometry employed by Kitaev turned out to be unnecessary, and 
planar versions (thus “surface codes”) were developed



Surface Code



Surface Code



Stabilizer measurement cycles

In the absence of errors, the same state is maintained by each subsequent cycle of the sequence, with 
each measure qubit yielding a measurement outcome Xabcd or Zabcd equal to that of the previous cycle:

● because all X and Z stabilizers commute with one another
● trivial for stabilizers that do not have any qubits in common
● X and Z operators on different qubits always commute.

Stabilizers that have qubits in common will always share 

two such qubits, For an X and Z stabilizer that measure 

data qubits a and b in common



Logical Operators

Any two-level quantum system that satisfies the 
relations 

can in principle be used as a qubit. 

Any system in which one can define X and Z 
operators that satisfy the relations can be used 
as a qubit, even if the system has more than two 
degrees of freedom



Suppression of Errors - Decoding


