Practical Quantum Computing

Lecture 11 CHP, Surface Code

Stabilizer Circuits

1. Controlled-NOT

2. Hadamard

$$|0\rangle\Box(|0\rangle+|1\rangle)/\sqrt{2}$$

 $|1\rangle\Box(|0\rangle-|1\rangle)/\sqrt{2}$

3. Phase =
$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

4. Measurement of a single qubit

Pauli Matrices

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \mathbf{Y} = \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix} \quad \mathbf{Z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$X^2=Y^2=Z^2=I$$
 $XY=iZ$ $YZ=iX$ $ZX=iY$ $XZ=-iY$ $ZY=-iX$ $YX=-iZ$

Unitary matrix U **stabilizes** a quantum state $|\psi\rangle$ if $U|\psi\rangle = |\psi\rangle$. Stabilizers of $|\psi\rangle$ form a group

X stabilizes
$$|0\rangle+|1\rangle$$
 -X stabilizes $|0\rangle-|1\rangle$
Y stabilizes $|0\rangle+i|1\rangle$ -Y stabilizes $|0\rangle-i|1\rangle$
Z stabilizes $|0\rangle$ -Z stabilizes $|1\rangle$

Gottesman-Knill Theorem

If $|\psi\rangle$ can be produced from the all $|0\rangle$ state of length n by just

- CNOT
- Hadamard
- and phase gates

then $|\psi\rangle$ is stabilized by 2^n tensor products:

- of Pauli matrices
- or their opposites
- where n = number of qubits

The **stabilizer** group is generated by $log(2^n) = n$ such tensor products Indeed, $|\psi\rangle$ is then **uniquely** determined by these generators We call $|\psi\rangle$ a **stabilizer state**

CHP Simulator

Goal: Using a classical computer, simulate an n-qubit CNOT/Hadamard/Phase computer.

Gottesman & Knill's solution: Keep track of **n** generators of the stabilizer group Each generator uses 2n+1 bits: 2 for each Pauli matrix and 1 for the sign.

So n(2n+1) bits total

But measurement takes O(n³) steps by Gaussian elimination

CHP Simulator

Idea: Instead of n(2n+1) bits, store 2n(2n+1) bits

- n stabilizers S₁,...,S_n, 2n+1 bits each
- n "destabilizers" D₁,...,D_n

Maintain the following invariants:

- D_i's commute with each other
- S_i anticommutes with D_i
- S_i commutes with D_j for i≠j

Together generate full Pauli group

I: $x_{ij}=0$, $z_{ij}=0$ + phase: $r_i=0$ X: $x_{ii}=1$, $z_{ij}=0$ - phase: $r_i=1$

Y: $x_{ii}^{y}=1$, $z_{ii}^{y}=1$

 $Z: x_{ii}^{3}=0, z_{ii}^{3}=1$

State: |00>

		x _{ij} bits	z _{ij} bits	r _i bits
Destabilizers	$D_{\scriptscriptstyle{1}}$	1 0	0 0	0 +XI
Destabilizers	$D_2^{'}$	0 1	0 0	0 +IX
Stabilizers	S₁	0 0	1 0	0 +ZI
	S	0 0	0 1	0 +IZ

Hadamard on qubit a:

For all $i \in \{1,...,2n\}$, swap x_{ia} with z_{ia} , and set $r_i := r_i \oplus x_{ia} z_{ia}$

State: |00>

		X _{ij} D	ITS	Z	, DITS	1	r _i dits	
Destabilizers	$D_{\scriptscriptstyle{1}}$	1	0		0	0	0	+X
Destabilizers	D_2^{L}	0	1		0	0	0	+ X
Stabilizers	S	0	0		1	0	0	+ZI
J. (2010)	S	0	0		0	1	0	+1Z

Hadamard on qubit a:

For all $i \in \{1,...,2n\}$, swap x_{ia} with z_{ia} , and set $r_i := r_i \oplus x_{ia} z_{ia}$

State:
$$|00\rangle + |10\rangle$$

		I I			
		x _{ij} bits	z _{ij} bits	r _i bits	
Destabilizers	$D_{\scriptscriptstyle{1}}$	0 0	1 0	0	+ZI
Destabilizers	$D_2^{'}$	0 1	0 0	0	+IX
Stabilizers	S	1 0	0 0	0	+XI
Otabin 2010	$S_2^{'}$	0 0	0 1	0	+IZ

CNOT from qubit a to qubit b:

For all
$$i \in \{1,...,2n\}$$
, set $x_{ib} := x_{ib} \oplus x_{ia}$ and $z_{ia} := z_{ia} \oplus z_{ib}$

State:
$$|00\rangle + |10\rangle$$

		x _{ij} bits	z _{ij} bits	r _i bits
Destabilizers	$D_{\scriptscriptstyle{1}}$	0 0	1 0	0 +ZI
Destabilizers	D_2^{L}	0 1	0 0	0 +IX
Stabilizers	S₁	1 0	0 0	0 +XI
	S_2	0 0	0 1	0 +IZ

CNOT from qubit a to qubit b:

For all
$$i \in \{1,...,2n\}$$
, set $x_{ib} := x_{ib} \oplus x_{ia}$ and $z_{ia} := z_{ia} \oplus z_{ib}$

State:
$$|00\rangle + |11\rangle$$

		x _{ij} bits	z _{ij} bits	r _i bits	
Destabilizers	$D_{\scriptscriptstyle{1}}$	0 0	1 0	0	+ZI
Destabilizers	$D_2^{'}$	0 1	0 0	0	+IX
Stabilizers	S₁	1 1	0 0	0	+XX
	$S_2^{'}$	0 0	1 1	0	+ZZ

Phase on qubit a:

For all
$$i \in \{1,...,2n\}$$
, set $r_i := r_i \oplus x_{ia} z_{ia}$, then set $z_{ia} := z_{ia} \oplus x_{ia}$

State:
$$|00\rangle + |11\rangle$$

		x _{ij} bits	z _{ij} bits	r _i bits	
Destabilizers	$D_\mathtt{1}$	0 0	1 0	0	+ZI
Destabilizers	$D_2^{'}$	0 1	0 0	0	+ X
Stabilizers	S₁	1 1	0 0	0	+XX
	$S_2^{'}$	0 0	1 1	0	+ZZ

Phase on qubit a:

For all
$$i \in \{1,...,2n\}$$
, set $r_i := r_i \oplus x_{ia} z_{ia}$, then set $z_{ia} := z_{ia} \oplus x_{ia}$

State:
$$|00\rangle + i|11\rangle$$

		100, 11.	- /		
		x _{ij} bits	z _{ij} bits	r _i bits	
Destabilizers	$D_{\scriptscriptstyle{1}}$	0 0	1 0	0	+ZI
Destabilizers	$D_2^{'}$	0 1	0 1	0	+IY
Stabilizers	S₁	1 1	0 1	0	+XY
	$S_2^{'}$	0 0	1 1	0	+ZZ

Measurement of qubit a:

If $x_{ia}=0$ for all $i \in \{n+1,...,2n\}$, then outcome will be deterministic. Otherwise 0 with $\frac{1}{2}$ probability and 1 with $\frac{1}{2}$ probability.

Random outcome:

Pick a stabilizer S_i such that x_{ia} =1 and set D_i := S_i . Then set S_i := Z_a and output 0 with ½ probability, and set S_i :=- Z_a and output with ½ probability, where Z_a is Z on a^{th} qubit and I elsewhere. Finally, left-multiply whatever rows don't commute with S_i by D_{ixs}

State: 11

		x _{ij} bits	z _{ij} bits	r _i bits	_
Destabilizers	$D_{\scriptscriptstyle{1}}$	1 1	0 1	0	+XY
Destabilizers	$D_2^{'}$	0 1	0 1	0	+ Y
Stabilizers	S₁	0 0	1 0	1	- ZI
	$S_2^{'}$	0 0	1 1	0	+ZZ

Using destabilizers for O(n²) measurement

Obtain deterministic measurement outcomes in only O(n²) steps, without using Gaussian elimination

Z_a (Z on qubit a and I everywhere else) commutes with the stabilizers

$$\sum_{h=1}^{n} c_h R_{h+n} = \pm Z_a$$

and Z_a is a linear combination for a unique choice of $c_1, ..., c_n \in \{0,1\}$

Determine c_i's, then by summing corresponding S_h's we learn sign of Z_a

$$c_i \equiv \sum_{h=1}^n c_h \left(R_i \cdot R_{h+n} \right) \equiv R_i \cdot \sum_{h=1}^n c_h R_{h+n} \equiv R_i \cdot Z_a \pmod{2}$$

So just have to check if D_i commutes with Z_a , or equivalently iff $x_{ia}=1$

Surface Code

The surface codes

- evolved from an invention of Alexei Kitaev
- known as toric codes
- efforts to develop simple models for topological order
- using qubits distributed on the surface of a toroid

The toroidal geometry employed by Kitaev turned out to be unnecessary, and planar versions (thus "surface codes") were developed

Surface Code

Eigenvalue	$\hat{Z}_a\hat{Z}_b\hat{Z}_c\hat{Z}_d$	$\hat{X}_a \hat{X}_b \hat{X}_c \hat{X}_d$
+1	$ gggg\rangle$	++++>
	$ ggee\rangle$	$ + + \rangle $
	$ geeg\rangle$	$ ++\rangle $
	$ eegg\rangle$	$ + + \rangle $
	$ egge\rangle$	$ -++-\rangle $
	$ gege\rangle$	$ + - + - \rangle$
	$ egeg\rangle$	$ - + - + \rangle $
	$ eeee\rangle$	$ \rangle $
-1	$ ggge\rangle$	$ +++-\rangle$
	$ ggeg\rangle$	$ + + - + \rangle $
	$ gegg\rangle$	$ +-++\rangle $
	$ eggg\rangle$	$ -+++ \rangle $
	$ geee\rangle$	$ +\rangle $
	$ egee\rangle$	$ -+\rangle $
	$ eege\rangle$	$ +- \rangle $
	$ eeeg\rangle$	$ + \rangle$

Surface Code

Stabilizer measurement cycles

In the absence of errors, the same state is maintained by each subsequent cycle of the sequence, with each measure qubit yielding a measurement outcome Xabcd or Zabcd equal to that of the previous cycle:

- because all X and Z stabilizers commute with one another
- trivial for stabilizers that do not have any qubits in common
- X and Z operators on different qubits always commute.

Stabilizers that have qubits in common will always share

two such qubits, For an X and Z stabilizer that measure

data qubits a and b in common

FIG. 5. (Color online) (a) An example where two measure-Z qubits report errors in a single row of a 2D array, marked by "E"s. This error report could be generated by (b) two \hat{X} errors appearing in the same surface code cycle on the 2nd and 3rd data qubit from the left, or (c) three \hat{X} errors appearing in the other three data qubits in the row.

Logical Operators

Any two-level quantum system that satisfies the relations

can in principle be used as a qubit.

Any system in which one can define X and Z operators that satisfy the relations can be used as a qubit, even if the system has more than two degrees of freedom

Suppression of Errors - Decoding

Unrotated distance 3, 5, 7, 9 uncorrelated (red) and correlated (blue)

