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MODELLING IN APPLIED

MECHANICS 2023

WEEK 21: RECTANGULAR PLATE RIGIDITY

Thu 12:15-14:00 Simplified analysis (JF)
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ACRYLIC PLATE
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ASSIGNMENT

According to linear theory, rigidity of a simply supported plate is constant whose value
depends on the plate thickness, size of the plate, and the plate material. Experiments
indicate, however, that rigidity increases rapidly in the transverse displacement. The actual
boundary conditions at the support may also affect the setting. For example, in rectangle
geometry, the contact between the plate and support may be lost at the corner regions (if the
displacement at the support is constrained only downwards like in the figure).

In the modelling assignment, you will study the effects of geometrical and material
parameters, and displacement on rigidity of a rectangular plate on a rectangular support. The
starting point is a generic expression predicted by dimension analysis. First, a simplified
linear model is used for a more specific relationship. After that, analysis by FEM is used for
a more precise picture. The final outcome is a design formula for rigidity. The modelled
rigidities are compared with that given by an experiment.
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IDEALIZATION AND PARAMETERIZATION
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Table 1. Geometrical and material parameters.

Parameter symbol value

Plate size H 0.6 m

Support size L 0.5 m

Thickness t 3 mm

Young’s modulus E 3.5 GPa

Poisson’s ratio  0.37
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SOURCES OF NON-LINEARITY

 Geometry: Equilibrium equations should be satisfied in deformed geometry depending on
displacement. Strain measures of large displacements are always non-linear.

 Material: Constitutive equation ( , ) 0g u  may be non-linear. Near reference geometry,
truncated Taylor series ( / ) ( / ) 0g g g u u           gives a useful approximation.

 External forces: External forces may be non-linear. A typical example is a follower force,
whose direction depends on structure displacement.

 Boundary conditions: Even the simplest contact conditions are non-linear. The one-sided
conditions in terms of inequalities are simple but rather tricky in a numerical solution
method.
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DIMENSION ANALYSIS

Assuming that the quantities related with the setting are E , , H , L , t , w , and F , dimension
analysis implies the relationship

2

4 ( , , )FL w H
t LEt

    (1)

The dimensionless groups are based on plate theory. The expression on the right hand
requires a more detailed analysis or additional assumptions. For example, assuming that the
displacement vanishes without loading, and that the relationship is the same with the
opposite force direction, the truncated Taylor expansion with respect to the first argument
gives

3
1 3( , , ) ( , ) ( , )( )w H H w H w

t L L t L t
       .
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If the force-displacement relationship is known to be linear, the second term can be omitted.
In terms of dimensionless groups, the design formula to be considered (without or with the
second terms on the right -hand side) will be of the form

3
1 2 0 3 2 3 3( , ) ( , )          , where
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and 0 3( , )   , 3 3( , )    need to be found by an analytical model, experiments, or by
simulation experiments using FEM (or by using all those methods).
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EXPERIMENT

The set-up is located in Puumiehenkuja 5L (Konemiehentie side of the building). The hall
is open for the experiment during the office hours (09:00-16:00) from Thu of week 21 to
Thu of week 22.

Place a mass on the loading tray and record the displacement shown on the laptop display.
Disk material is not purely elastic so wait for the displacement reading to settle (almost).
Gather enough mass-displacement data to find the displacement-force relationship reliably.
For example, you may repeat a measurement with certain loading several times to reduce
the effect of random error by averaging etc. You may also consider different loading
sequences (like increasing and decreasing the mass) to minimize the effect of the viscous
part of material response.
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Table 1. Measured mass-displacement values

Mass [kg] Displacement [mm]

0.0 0.00

1.0 1.41

2.0 2.45

3.0 3.31

4.0 4.09

5.8 5.30

7.7 6.33
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LEAST-SQUARES FIT

Using the least squares fit with the form predicted by dimension analysis gives

0 3( , ) 20.21    , 3 3( , ) 2.58     when 3 1.2   and 0.37  .
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SIMPLIFIED ANALYSIS

Simplified small displacement analysis can be based on the double-sine series solution to a
rectangular simply supported plate. One may also use the virtual work density of Kirchhoff
plate and, e.g., a one-parameter displacement approximation (MEC-E1050, MEC-E8001,
MEC-E8003).

                         Simply supported                                            Contact
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Let us assuming small displacements, contact only at the midpoints of the sides of the
rectangular support, and the one-parameter displacement expression

2 2

2( , ) (1 4 )F
x yw x y w

L


  .

The approximation is too simplistic for a precise force-displacement relationship but may
be used to verify the form given by dimension analysis. Using the virtual work expression
for the Kirchhoff plate model in bending with the approximation above

4

2
232 ( )

3 1
1FwF

E
L

t
H
Lt 


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   so 2
1 3 3

132( , )
3 1

   





which is consistent (in the form) with the outcome of dimension analysis. Finding the
expression of 3 3( , )    requires large displacement analysis (to be discussed later).
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LINEAR ANALYSIS (MEC-E1050)

Virtual work expression for small displacement analysis (just the bending mode
contribution) is given by

 

T
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κ κ ) ( , )
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where the curvature components and elasticity matrix are defined by
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When the approximation is substituted there, virtual work expression simplifies to

2 3

4 )32(
3 1( )

F F
H t EW F

L
w w 


 


.

Then, principle of virtual work 0W  Fw  and the fundamental lemma of variation
calculus implies that
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LARGE DISPLACEMENT ANALYSIS (MEC-E8001)

Virtual work expression for the large displacement analysis is given by

   

T T

3κ κ
κ κ ) ( , )1 (

12
2 2 2

2
κ 2κ

xx xx xx xx

yy yy yy yy F F

xy xy xy xy

tt E E dA w x y FW    


        
                          
                      

 ,

where the Green-Lagrange strains and curvature components simplified for moderate
displacements are
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FINITE ELEMENT ANALYSIS

Analysis by the finite element method and solid or plate/shell elements gives the
displacement without (too many) simplifying assumptions. Numerical method requires
numerical values for all the problem parameters, but one may consider the effects of non-
linearity due to large displacement and one-sided boundary condition at the support.


