Quantum computing for quantum
materials
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Today’s plan

* Entanglement in many-body wavefunctions
* Basics of gquantum circults
* The variational quantum eigensolver

* Quantum machine learning



Previously, in session 8:

Two magnetic Hamiltonians

The Heisenberg dimer The Ising dimer
H =Sy S M = SZS-
GS) = L[| 1) — | 1] GS) =[1h

Entangled Not entangled

How do we distinguish between the two in general?



Entangled states

If a state can be written as

W) = |P4)®|Up)

Then we say that it is not entangled

Exercise: is the following state entangled or not?

) =11+ 1)



Entangled states

If a state can be written as

W) = |P4)®|Up)

Then we say that it is not entangled

Exercise: is the following state entangled or not?

) =[N+t + LD+ 1)



Entangled states

If a state can be written as

W) = |P4)®|Up)

Then we say that it is not entangled

Exercise: is the following state entangled or not?

) =11 — 1)



The entanglement entropy

Define the density matrix P = |¢> <¢’
Trace over one subsystem (reduced density matrix) pPA = 1r B ( p)
Defining the entropy of the state SA — —TT(,OA log ,OA)

Exercise: what is the reduced density matrix of

L (1 tals) - | dats)

W) = —(\ Tals) + | tale) |¥) = %

=



Quantum gates



Real pairs of spins

Imagine that you have real systems with spins you can control

What are the fundamental unitary operators you could use?



Pauli X gate

e Acting on a general qubit state

[4) = «|0) + B[]1)
X|y) = al1) + [0) = B|0) + a|1)

e [tisits own inverse

R



Hadamard gate

e Acts on a single qubit

Dirac notation

0) = 5 (10) + 1))
1) = 2= (10) — 1))

Unitary matrix

1 |1 1
H=—
vo il -1
No classical equivalent

e One of the most important gates for quantum computing



Paull Y gate

e Acts on asingle qubit
Dirac notation Matrix representation circuit representation

0) = 4[1), 1) = —i[0) Y=[? ﬂ

Gate with no classical equivalent



CNOT gate

Controlled NOT gate

Acts in two qubits

Matrix representation Circuit representation
1 0 0 O ®
0 1 0 O
CNOT =
0 0 0 1 1
00 1 0 N




Approximating unitaries

Generic unitaries can be approximated to arbitrary precision with a set of gates

= o O O
o = O O

o O = O

1

1M1 1 1 0 1 0 0
H= — T — | CNOT =

\/5{1 —1] S [0 J [0 ewffl} 0

0

Exercise: how do you write the X gate in terms of H and S?



Quantum circuit

Gates can be arranged to form a quantum circuit

— H .

Uniike classical crrcuits,

the same number of wires

T
D

s going throughout the circuit — H
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The variational guantum
elgensolver



The guantum many-body problem

Let us go back to a simple many-body problem H = E Jij S'z, . Sj
1)

A typical wavefunction is written as

‘\Ij> — Z Csi,52,...,51, |317 S2, °°°SL>

We need to determine in total 2L coefficients

Is there an efficient way of storing so many coefficients?



Storing wavefunctions with matrix
oroduct states




Storing wavefunctions with neural

networks

Do not store the coefficient, but find the right function that generates them

081,82,....,8L — f(817 Sy eenny SL)

E

Deep neural network

e EERD v




Storing wavefunctions with quantum

clrcuits

Parameterized
quantum circuit

Initial Quantum circuit

state > that depend on Output
6 ¥)

[Po)

The architecture of the circuit depends on the parameters



How to obtain the ground state

with a guantum circuit

CPU

(H
(Ha)

(Hy)

_________________________________________

..................................................................

Execute the circuit that generates your trial wavefunctions
Get the expectation value of the Hamiltonian

Update the gate parameters to minimize energy

Repeat until convergence



Quantum circuit as a ground state

generator

‘P
e.g. Variational Quantum Eigensolver, Classifier, Autoencoder, QAOA... Objective %’A
Parameterized H g 2,

gquantum circuit

S

Initial Expectation
Output value E
tat + €
o ) :t[ WIHI) ]EC [:°
V)
%o)
_— B

|
-+ - ,///]
New @ \ <
N

Classical optimization Variational principle: E = (|H|y) > E|




Optimizing the wavefunction

* Gradient Descent
— Commonly chosen in classical optimization problems
— Update parameter(s) based on largest energy change
— Requires many circuit evaluations
— Easy to get stuck in local minima
* Simultaneous Perturbation Stochastic Approximation (SPSA) optimizer
— Ideal for “noisy” cost functions
— Perturbs all parameters at once
— Runs circuit twice, takes set of parameters that minimizes energy



Mapping fermions to spins

T

Naively, one might just map a; = o} = %(J‘E +i0Y)anda; = o, = %({:rﬂj — i0Y) as they

preserve anticommutator relations for same-site occupancy {0’3_, Ji_} =1

However, [crj, aj_] = 0, ¢ #* jimplies spins on different sites commute The Jordan-Wigner

mapping gets around this by considering a string of N qubit operations:

a; = I@i—l ® o’ ® G_Z@N—i
o > I¥ @0 @7

Requires knowledge of the occupancy of the N — ¢ state occupations of those orbitals.

The wave function is spread out across all [NV qubits.



A minimal example of VQE

Take the Hamiltonian H =55

With initial state |\IJQ> = ‘ T¢>

What is the quantum circuit that would give you the ground state?

Parameterized
quantum circuit

Initial Quantum circuit

state > that depend on Output
] )

[Wo)




Quantum circuits for
machine learning



Some examples of machine learning

Supervised Generative Reinforcement
learning learning learning

3

4!‘-"-#‘
- -

HDOgH

Labeled prediction Probability Modeling Reward-based decision

(and others)



Machine learning with neural

networks

hidden layers

output
layer

Neural networks are a it
family of parametric functions layer

VV’ vv' ‘vv
VYA 7AN Y
) ()
PN
The parameters are optimized to minimize a certain functional

X = LOSS[greal — gpredicted] — LOSS[?jreal — f(freal)]

‘ 2

For example X 7 |g7rea1 — f(freal)



Machine learning with tensor-

networks

Tensor-networks allow to parametrice high-dimensional functions
- S1 S2 S3
o, = M M3> ... M3

o, oL Csqy,s9,....,
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘\Ij> :ZCS]_,SQ ..... SL‘817827“‘SL>

Can we use tensor-network architectures “as if” they were neural networks?

Quantum many-body inspired machine learning

14
f(x) = o u'

Sadndaan




Quantum circuits as variational

functions

Rational:

Deliver variational quantum states — explore a large Hilbert space.

Ul@) =U,...UlU; Near optimal solution

U, -

| U _
Us !

A quantum computer is, in a way, a machine that generates variational states



VQE as a quantum machine

learning algorithm

VQE is hybrid classical-quantum algorithm.

1. Define an optimization problem, e.g. energy, correlations, etc.

2. Apply "machine learning ™ on circuit design.

E QPU CPU
: (Hy)
g Quantum module 1 R
(Ha)
e d  Quantum module 2 —_—
(Ha)
> Quantum module 3 —_—
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Quantum state preparation

(Hn)
Emmmd Quantum module N E——




Quantum circuit for supervised

learninc

— —

[bo) = [W(F,0)) = |¥(Z,0, ) O

_ ] IF‘[T]—A[[“JH H'Z%E-_'T input space A’ B
eiercipiaeing
c 1easurement —_— ]
eature space
reature spa basis

We can then compute the Kernel

k(i xj) = (P (x:) | D (5))

Or minimize the fidelity w.r.t. target states

D
C(0) = Z; (1 - |(y:|T(x;,0))%)




* Quantum circuits allows us to encode many
body Hamiltonians and minimize their
wavefunctions

* Remember the deadline for this (last) exercise
sheet on Friday June 2nd
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