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Today’s plan

* Areview of band structures (and a step beyond)

* Areview of superconductivity (and a step
beyond)

* Areview of topology (and a step beyond)



Band structure, a reminder



Multi-orbital band-structures
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Multi-orbital band-structures
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Multi-orbital band-structures

H = Z taﬁCL,nCB,n + Z ’yagcer,an,n_H + h.c.
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€p,o are the eigenvalues of the matrix

W) =t + Ve + h.c

But what if we do not have periodicity in the system?



Superpotentials and
guasiperiodicity



A minimal moire potential

Let us now take a one dimensional superlattice
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We have now two length scales

The lattice constant of the top system
The lattice constant of the bottom

Let us see how the electronic structure gets modified by the superlattice effect



A minimal moire potential

H = Z ! eni1 + hoc.+ A Z cos(gn)c! cn
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Spectrum as a function

of the moire wavevector

e i
5 “g::": .-.,_' “ml]I||| I "“"l“ IIIM“ .._..-'...E:.:'{i;

NNy,
iy, A P
?“HMWWWMWWW ---------- mmmmmwwm
: |

i |
. ’F'!ﬂ!""ﬂ'”'" = ”MNMMH‘MM ..... mﬂ"Iﬂnn..l""ﬁ"fﬁ-!??ii;s:;!ﬂ
N g ([ T




Superpotentials and criticality
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Molre potentlals Can give rise to critical wavefunctions .



Superpotentials and criticality
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Minibands and band
structure unfolding



Supercells and band folding

Let us take a 1D chain H = g C:rq,cn—l—l 4+ h.c.
mn

Let us see how the electronic structure changes with the unit cell
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Supercells and band folding

Momentum



Supercells and band folding

Momentum



Supercells and band folding




Supercells and band folding

All these electronic structures represent the same physical system, but how do we see that?



Supercells and band folding

Momentum

Repeating the electronic structure recovers the original electronic dispersion



Supercells and band folding

Momentum

Repeating the electronic structure recovers the original electronic dispersion



Supercells and band folding
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Momentum

Repeating the electronic structure recovers the original electronic dispersion



Unfolding and anticrossings in superlattices

Let us now put an impurity every 6 sites (once in a supercell 6)
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H = Z CLCn_|_]_ + h.c. + Vg Z c};cn Q

0 (mod 6)



Unfolding and anticrossings in superlattices

H = Z chnH + h.c. + V Z chn Vo =20

Unfolding

Momentum



Electronic structure unfolding

H = Z C,Lcn_i_l + h.c. + V Z c,];cn Vo 7é 0
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Anticrossing between the bands appear due to the superlattice potential



Electronic structure unfolding
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As the periodicity of the superlattice is increased, more minibands appear



Moire electronic structure

5 5 5
4 4 4
53 53 S3
o o o
2 2 \_j L/ 2 \j b
— I
1 1 1
0 Energy 0 Energy 0 Energy

As the strength of the miore potential increases, the density of states gets enhanced



A short exercise

To discuss

H =)\ Z cos(gn)c! e,

For a lattice with L sites, what is the value of g that makes the potential commensurate?
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A platform for band
structure folding



heterostructure
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A bilayer van der Waals heterostructure
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Band structure of twisted bilayer graphene
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As the angle between layers in decreased, the bands become flatter



Band structure of twisted bilayer graphene
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As the rotation angle approached 1 degree, the lowest band becomes flatter



A bilayer van der Waals heterostructure

AA stacking
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A bilayer van der Waals heterostructure
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Electronic states in a single moire superlattice

Twisted bilayer graphene Superconductivity ~ Topological networks Chern insulators

Fractional Chern

CorreAIated insulators Quasicrystalline physics insulators
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A single twisted van der Waals material realizes a variety of widely different electronic states




Superconductivity, a
reminder



A reminder about superconductivity

The original Hamiltonian H = Z GkCLka,s + Z ACLTCT—k,i + h.c.
k.s k

Can be rewritten as

Ck1
1 + Ci| < Electron sector
_CT_kT - Hole sector
(Gk 0 A 0 \
0 € 0 A
with  H = k

A 0 —ex 0
\O A 0 —Gk)




Generic forms of superconductivity

A generic superconducting Hamiltonian

Af AT * o~ o~
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Can be characterized by a superconducting matrix Ak = ’ ’

Ap i+ Ak

The symmetry of the SC order determines the nature of the SC order



Superconducting momentum symmetries

A generic type of a superconductor is characterized by the order parameter

Real space Reciprocal space

Apy(r,r) ~ {erpery) Apy(k) ~ (cxrexy)

The superconducting state can be characterized by the symmetry of ATi (k)



Singlet and triplet superconductors

The superconducting order inherits a symmetry property

(

A_r = —Ay even
AN — _ R — yS182 ,$281
k,s152 —k,s251 _A—E = A odd
\ yS1S52 ;8281
Spin-singlet (even) Spin-triplet (odd)
A (k) = Apy (k) Art(k) = =App(=k)

The symmetry of the superconducting order characterizes the superconductor



Superconductivity and
magnetism



Impurities in 2D superconductors

What happens if you simulataneously superconductivity and a magnetic impurity?

How detrimental are defects in superconductors?



Impurities in 2D superconductors

A non-magnetic impurity A magnetic impurity
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Non-magnetic impurity, conventional

S-Wwave Su perconductor

Without non-magnetic impurity With non-magnetic impurity
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A non-magnetic impurity does not affect conventional s-wave superconductors



Non-magnetic disorder, conventional

S-wave superconductor

Without non-magnetic disorder With non-magnetic disorder
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Non-magnetic disorder does not impact a conventional s-wave superconducting gap



The interplay between

magnetism and superconductivity

Without magnetic impurity With magnetic impurity
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Magnetic impurities create in-gap states in fully gapped superconductors



The interplay between
magnetism and superconductivity

The exchange coupling controls the energy of the in-gap state
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The effect of magnetic disorder Iin

superconductors
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Without magnetic disorder With magnetic disode
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Magnetic disorder decreases the gap of conventional superconductors



The interplay between impurities and

unconventional superconductivity

Pristine With a non-magnetic impurity
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Non-magnetic impurities create in-gap states in fully gapped unconventional superconductors



The impact of non-magnetic disorder in

unconventional superconductors

Non-magnetic disorder in unconventional superconductors decreases the gap

Without disorder With non-magnetic disorder
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Non-magnetic impurities in nodal

superconductors
Pristine 16 With a non-magnetic impurity
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Non-magnetic impurities create in-gap states in nodal unconventional superconductors




A short guestion

To discuss

What type of superconducting order is each one?

f P P
Cn,1%n,| CnCnt1,y CrtCnt1,1

and which symmetries do they break?



Topology, a reminder



Topological invariant

IN a Hamiltonian

We can classify Hamiltonians according to topological invariants

Hamiltonian Wavefunction
H (k) -| ¥ (k))
\/
C = BZQd2k< Q:VXA‘Z,

Metric

Topological invariant
(Berry curvature)

(Chern number)



The role of a topological invariant

Hamiltonians with different topological invariants
can not be deformed one to another without closing the gap

4 4 B
2 2
) )
o O g O
C C
W W
-2 -2
—4 Momentum

—4 Momentum

edge/bulk/edge edge/bulk/edge




The conseguence of different

topological invariants

Trivial system Topologically Topological system

~_ e =
H, 4+ H,

C;=0)1C=1

Topological excitations appear between topologically different systems




Topology from Dirac
eguations



Edge states in quantum spin Hall insulators

In a quantum spin Hall insulator, opposite spin propagate in opposite directions

Two copies of a quantum Hall insulator, one for each spin channel



The relation between two topological states

Chern insulators

—

_

Chiral modes
Break time-reversal symmetry

Quantum spin Hall insulators

—
—

—
—

Helical modes
Do not break time-reversal symmetry



The quantum spin Hall state

driven by magnetic field in graphene
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As an in-plane field in increased, a trivial QH state transforms in a quantum spin Hall state



Chern insulators

The bulk is insulating The edge has chiral states
(Wlthout an external magnetic field)

Hall conductivity (Chern number)
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Two different gaps in a 2D material
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The total Chern number is nonzero, driven by breaking of time-reversal symmetry



Two different gaps in a 2D material
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The total Chern number is zero, driven by breaking of inversion symmetry



The Hamiltonian of a topological insulator

Look for a system that has massive Dirac equations

H(pz,py) = D20z + Pykoy, +mo, = ( ) _m;;/{py Dz i—;fpy)
L. .
The finite mass gives rise to a local Chern number C’S)a — §Slgn(m)81gn(/<;)
If the mass for spin up is opposite than for spin down, then
Chern number Spin Chern number
C=0C;+C; =0 Cs=Cr—C| = =2

In a system with spin-orbit coupling, spin dependent masses can be generated



Quantum spin Hall insulators

Chern insulator for spin up Chern insulator for spin down
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Spin-orbit coupling (SOC) can drive a quantum spin Hall state

L . S ~ L p S 5 SOC acts as a magnetic field with opposite signs for opposite spins



Quantum spin Hall insulators

Opposite spins propagate in opposite directions (helical gas)
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Quantum spin Hall insulators
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Disorder in guantum spin Hall insulators

No disorder Non-magnetic disorder Magnetic disorder
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Disorder that breaks time reversal symmetry opens a gap in the topological states



A short guestion

To discuss

Which of the two schematics depicts a correct interface between a Chern and spin Hall insulator?



Thank you for joining the course
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