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Preface

In 1961 the second author delivered a series of lectures at Haverford Col-
lege on the subject of “Rational Points on Cubic Curves.” These lectures,
intended for junior and senior mathematics majors, were recorded, tran-
scribed, and printed in mimeograph form. Since that time they have been
widely distributed as photocopies of ever decreasing legibility, and por-
tions have appeared in various textbooks (Husemoller {1], Chahal [1]), but
they have never appeared in their entirety. In view of the recent inter-
est in the theory of elliptic curves for subjects ranging from cryptogra-
phy (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]),
as well as the tremendous purely mathematical activity in this area, it
seems a propitious time to publish an expanded version of those original
notes suitable for presentation to an advanced undergraduate audience.
We have attempted to maintain much of the informality of the orig-
inal Haverford lectures. Our main goal in doing this has been to write a
textbook in a technically difficult field which is “readable” by the average
undergraduate mathematics major. We hope we have succeeded in this
goal. The most obvious drawback to such an approach is that we have
not been entirely rigorous in all of our proofs. In particular, much of the
foundational material on elliptic curves presented in Chapter I is meant
to explain and convince, rather than to rigorously prove. Of course, the
necessary algebraic geometry can mostly be developed in one moderately
long chapter, as we have done in Appendix A. But the emphasis of this
book is on the number theoretic aspects of elliptic curves; and we feel that
an informal approach to the underlying geometry is permissible, because
it allows us more rapid access to the number theory. For those who wish
to delve more deeply into the geometry, there are several good books on
the theory of algebraic curves suitable for an undergraduate course, such as
Reid [1], Walker [1] and Brieskorn-Kaoérrer [1]. In the later chapters we have
generally provided all of the details for the proofs of the main theorems.
The original Haverford lectures make up Chapters I, II, III, and the
first two sections of Chapter IV. In a few places we have added a small
amount of explanatory material, references have been updated to include
some discoveries made since 1961, and a large number of exercises have
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been added. But those who have seen the original mimeographed notes will
recognize that the changes have been kept to a minimum. In particular, the
emphasis is still on proving (special cases of) the fundamental theorems in
the subject: (1) the Nagell-Lutz theorem, which gives a precise procedure
for finding all of the rational points of finite order on an elliptic curve;
(2) Mordell’s theorem, which says that the group of rational points on an
elliptic curve is finitely generated; (3) a special case of Hasse’s theorem, due
to Gauss, which describes the number of points on an elliptic curve defined
over a finite field.

In the last section of Chapter IV we have described Lenstra’s ellip-
tic curve algorithm for factoring large integers. This is one of the recent
applications of elliptic curves to the “real world,” to wit the attempt to
break certain widely used public key ciphers. We have restricted our-
selves to describing the factorization algorithm itself, since there have been
many popular descriptions of the corresponding ciphers. (See, for example,
Koblitz [2].)

Chapters V and VI are new. Chapter V deals with integer points on
elliptic curves. Section 2 of Chapter V is loosely based on an IAP under-
graduate lecture given by the first author at MIT in 1983. The remaining
sections of Chapter V contain a proof of a special case of Siegel’s theorem,
which asserts that an elliptic curve has only finitely many integral points.
The proof, based on Thue’s method of Diophantine approximation, is el-
ementary, but intricate. However, in view of Vojta’s [1] and Faltings’ [1]
recent spectacular applications of Diophantine approximation techniques,
it seems appropriate to introduce this subject at an undergraduate level.
Chapter VI gives an introduction to the theory of complex multiplication.
Elliptic curves with complex multiplication arise in many different contexts
in number theory and in other areas of mathematics. The goal of Chap-
ter VI is to explain how points of finite order on elliptic curves with complex
multiplication can be used to generate extension fields with abelian Galois
groups, much as roots of unity generate abelian extensions of the rational
numbers. For Chapter VI only, we have assumed that the reader is familiar
with the rudiments of field theory and Galois theory.

Finally, we have included an appendix giving an introduction to projec-
tive geometry, with an especial emphasis on curves in the projective plane.
The first three sections of Appendix A provide the background needed for
reading the rest of the book. In Section 4 of Appendix A we give an ele-
mentary proof of Bezout’s theorem, and in Section 5 we provide a rigorous
discussion of the reduction modulo p map and explain why it induces a
homomorphism on the rational points of an elliptic curve.

The contents of this book should form a leisurely semester course,
with some time left over for additional topics in either algebraic geome-
try or number theory. The first author has also used this material as a
supplementary special topic at the end of an undergraduate course in mod-
ern algebra, covering Chapters I, II, and IV (excluding IV §3) in about
four weeks of classes. We note that the last five chapters are essentially
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independent of one another (except IV §3 depends on the Nagell-Lutz the-
orem, proven in Chapter II). This gives the instructor maximum freedom
in choosing topics if time is short. It also allows students to read portions
of the book on their own (e.g., as a suitable project for a reading course
or an honors thesis.) We have included many exercises, ranging from easy
calculations to published theorems. An exercise marked with a (x) is likely
to be somewhat challenging. An exercise marked with (*) is either ex-
tremely difficult to solve with the material we cover or actually a currently
unsolved problem.

It has been said that “it is possible to write endlessly on elliptic
curves.”t We heartily agree with this sentiment, but have attempted to
resist succumbing to its blandishments. This is especially evident in our
frequent decision to prove special cases of general theorems, even when only
a few more pages would be required to prove a more general result. Our
goal throughout has been to illuminate the coherence and the beauty of
the arithmetic theory of elliptic curves; we happily leave the task of being
encyclopedic to the authors of more advanced monographs.

Computer Packages

The first author has written two computer packages to perform basic com-
putations on elliptic curves. The first is a stand-alone application which
runs on any variety of Macintosh. The second is a collection of Mathematica
routines with extensive documentation included in the form of Notebooks in
Macintosh Mathematica format. Instructors are welcome to freely copy and
distribute both of these programs. They may be obtained via anonymous
ftp at
gauss.math.brown.edu (128.148.194.40)

in the directory dist/EllipticCurve.
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