
Practical Quantum Computing

Lecture 12
Surface Code, Lattice Surgery,
Decoding, Compiling Circuits

using slides from Austin Fowler and James Wootton

Reading materials

1. https://arxiv.org/abs/1208.0928
2. https://arxiv.org/pdf/1111.4022.pdf
3. https://arxiv.org/pdf/1808.02892.pdf
4. https://arxiv.org/abs/1302.3428
5. https://arxiv.org/abs/2205.09828

https://arxiv.org/abs/1208.0928
https://arxiv.org/pdf/1111.4022.pdf
https://arxiv.org/pdf/1808.02892.pdf
https://arxiv.org/abs/1302.3428
https://arxiv.org/abs/2205.09828

The Surface Code

3

● Quantum error correcting codes are
defined by the measurements we make

● Let’s move beyond the simple 𝑍_𝑗 𝑍_(𝑗+1)
of the repetition code

● In the surface code we use a 2D lattice of
code qubits, and define observables for
plaquettes and vertices

Plaquette Syndrome
● First let’s focus on the plaquette syndrome
● These are similar to the two qubit measurements in the repetition code
● Instead we measure the parity around plaquettes in the lattice
● Can again be done with CX gates and an extra qubit

4

Plaquette Syndrome

5

We can define a classical code (storing only a
bit) based on the plaquette syndrome alone

Valid states are those with trivial outcome for all
plaquette syndrome measurements:

● Even parity on all plaquettes
● How to store a 0 in this?
● How about the state where every code

qubit is |0⟩?

Plaquette Syndrome
● There are ‘nearby’ states that also have even parity on all plaquettes
● These can’t be a different encoded state: they are only a few bit flips away

from our encoded 0 state
● We’ll treat them as alternative ways to store a 0

6

Plaquette Syndrome
● Given any state for an encoded 0

○ Pick a vertex
○ Apply bit flips around that vertex

● Now you have another valid state for 0
● This generates an exponentially large family

7

Plaquette Syndrome
● The states in this family can be very different
● But they all share a common feature

○ Any line from top to bottom (passing along edges) has even parity
● This is how we can identify an encoded 0
● And it gives us a clue about how to encode a 1

8

Plaquette Syndrome

● For our basic encoded 1, we use a bunch of
0s with a line from left to right (passing
through plaquettes)

● This also spawns an exponentially large
family

● All have odd parity for a line from top to
bottom

● Unlike the repetition code, distinguishing
encoded 0 and 1 requires some effort (which
is good!)

9

Logical X and Z
○ Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

○ The following observables detect what we need

○ Or the same on any line from top to bottom

○ Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes

10

Logical X and Z
○ To flip between 0 and 1, we can flip a line of qubits

○ Such lines of flips act as an X on the logical qubit

11

Effects of Errors
○ Applying an X to any code qubit changes

the parity of its two plaquettes

○ An isolated X creates a pair of defects

○ Further Xs can be move a defect, or
annihilate pairs of them

○ A logical X requires many errors to stretch
across the lattice

○ With the plaquette operators, we can
encode and protect a bit

12

Vertex Syndrome

13

● Now forget the plaquettes and focus on vertices
● These observables can also be measured using CX gates an an ancilla
● In this case they look at the |+⟩ and |-⟩ states, and count the parity of the

number of |-⟩s

Vertex Syndrome

14

● These operators also allow us to encode
and protect a bit value

● In this case, let’s use + and - to label the
two states

● They are encoded using suitable patterns
of |+⟩ and |−⟩ states for the code qubits

● As with the plaquettes, these also
correspond to exponentially large families
of states

Logical X and Z

15

● What is the X operator (distinguish between |+⟩ and |−⟩)?
● What is the Z operator (flip between |+⟩ and |−⟩)?
● Turns out they are exactly the same as before!

Effects of Errors
○ Applying a Z to any code qubit changes the X

parity of its two vertices

○ An isolated Z creates a pair of defects

○ Further Zs can be move a defect, or annihilate
pairs of them

○ A logical Z requires many errors to stretch across
the lattice

○ With the vertex operators, we can encode and
protect a bit

16

Putting it all Together
○ The plaquette and vertex operators commute

○ This allows us to detect both X and Z errors

○ Since Y~XZ, we can detect Y errors too

17

Putting it all Together
○ The Z and X operators on the encoded qubit are exactly the same as before

○ These, and the Hadamard, can be performed fault-tolerantly

18

Putting it all Together
○ The states we need are highly entangled quantum states

○ They are examples of topologically ordered states

○ Though such things can be hard to make, we create and protect them with the syndrome measurements

19

Putting it all Together

20

● We are not just protected against X and Z, but all local errors
● As mentioned earlier, Y~XZ
● Everything else can be expressed

𝐸=𝑎 𝐼+𝑏 𝑋+𝑐 𝑌+𝑑 𝑍
● This creates a superposition of different types of error on the surface code
● Measuring the stabilizers collapses this to a simple X, Y or Z
● Though such things can be hard to make, we create and protect them simply by making the

stabilizer measurements

Lattice Surgery

Lattice Surgery

arXiv:1808.06709, arXiv:1808.02892

Logical XX measurement

Logical CNOT

Multi-body logical X measurement

More Logical Gates

● We’ve seen how to do logical X and Z
● A logical CX can be done without much

trouble
● A logical H requires the lattice to be rotated,

but that can be done
● Other logical Clifford gates can be done with

some crazy tricks
● But that’s all! No other logical operations can

be done fault-tolerantly.
● A solution is magic state distillation, using

the logical gates we have to clean up the
one we don’t

27

Decoding

Final Readout
○ The logical operators are many-body observables

○ So how do we read them out fault-tolerantly

○ When you decide on a basis for final measurement,
you stop caring about some errors

○ You can then measurement in a product basis

○ Final readout and final stabilizer measurement can
be constructed from the result

○ Measurement errors are effectively the same as
errors before measurement

29

Decoding
○ Given the measurement results, we need to work out what errors happened

○ More specifically, the ‘equivalence class’ of errors

○ This is the job of the decoding algorithm

30

Decoding with MWPM
○ A good option is Minimum Weight Perfect Matching

○ We start with the simple and unrealistic case: errors only between
measurement

○ Each round can be decoded separately, corresponding to MWPM on
a 2D graph

○ Decoding for X and Z errors can also be done independently

31

Manhattan distance
between vertices

Decoding
○ We need to be careful to account for the effects of the edges

○ This is done by introducing extra ‘virtual nodes’

32

Imperfect Measurements

○ We have the problem of imperfect measurements

■ The measurements might lie

■ Errors on the additional qubit

■ Errors in the CX gates

○ We base the decoding using syndrome changes

○ This leads to a 3D MWPM problem (2D space + time)

33

Gate sequence:
Find X
errors

Find Z
errors

X
L

Z
L

Gate sequence:
Find X errors

Find Z errors

X
L

Z
L

1

0

1

1

1

1
X

How to do memory:

Measurement value change = detection event

How to do memory:

Build graph of all possible detection events

X

X

X

X

X

X

X

X

X

X X X

X X X

X X X

Classical processing

● 10 data qubits
● One detection event

● 10 data qubits
● One detection event
● Explore uniformly,

boundary found

Classical processing

● 10 data qubits
● One detection event
● Explore uniformly,

boundary found
● Match detection event to

boundary, record belief that
X error present

X

Classical processing

● Two more detection events

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

● Explore around other,
exploratory regions touch

X

Classical processing

● Two more detection events
● Pick one, explore, current

time boundary
encountered

● Explore around other,
exploratory regions touch

● Match, record belief that
two more X errors present

X

X

X

Classical processing

X

X

X

● One more detection event

Classical processing

● One more detection event
● Explore, current time

boundary encountered,
must wait for more data

X

X

X

Classical processing

X

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

Classical processing

X

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

• Match, record belief that
two more X errors present

X

X

Classical processing

X

X

• One more detection event

• Explore, current time
boundary encountered,
must wait for more data

• Explore further, boundary
encountered

• Match, record belief that
two more X errors present

• Cancel double error

• Don’t apply physical
corrections

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

 Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

Classical processing

X

X

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X

X

X

X

Classical processing

X

X X

X

X

X

X

X

Classical processing

X

X

X

X

X

X

Classical processing

Correlated errors

Threshold
○ Correcting according to the right class removes the effects of errors

○ Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)

○ What is the probability of such an error, P, given the probability on the qubits of the code, p?

○ We find a phase transition as L is increased (for an LxL grid)

70

Simulated performance

● pL = 0.1(100p)(d+1)/2

● O(1) parallel algorithm
● Low latency

p

p
L

Logical Gates and Experiments

Logical identity
X

L

Z
L

d
d

d

Logical move

Logical move

Can move anywhere, even back in time, up to Pauli operators.

Cliffor
d

Logical Hadamard

d
d

d

Device and experiment

• Show d=5 better than d=3
• Continuous running
• Real-time decoding
• d=34 extreme exponential suppression

(d=11 arXiv:2102.06132)

Challenges

• Yield < 100%
• Coherence ~20us
• Readout and reset ~1us

(arXiv:2102.06131)
• Calibration 0.5% (arXiv:1907.02510)
• Cosmic rays (arXiv:2104.05219)
• Decoding (arXiv:1202.5602)
• Target 1.5 to 10x suppression

Scalable?

10k scalable qubits

1M qubits

Compiling

Graph states

• Every stabilizer state can be converted to a graph state using
only
local Clifford operations

• Graph state with nodes i and edge
neighbourhood

Teleportation based QC

Traditional circuit compilation

● Shortcomings of
traditional approach

● Performs Clifford operations on a
stabilizer state which can be simulated
efficiently on a classical device

● No room for optimisation other than at
the circuit level.

Example of Algorithm specific compilation

Input circuit Teleportation widget

Algorithm specific graph compiler

Jabalizer – A Julia based graph compiler https://github.com/QSI-BAQS/Jabalizer.jl

https://github.com/QSI-BAQS/Jabalizer.jl

State distillation

State distillation

Measure multi-body X operator!

State distillation

State distillation

State distillation

State distillation

State distillation

State
injection

T/Tdag
gate

Sdag gate (50% of the
time)

Good news so far:
● 2D nearest neighbor

● Modest fidelity requirements

● Compact universal computation

● Arbitrary range interactions

● Multi-body measurements

● Flexible code strength

