

Aalto University

No calculators or notes of any kind are allowed.
This exam consists of 5 problems, each of equal weight.
All answers must be justified with appropriate reasoning and calculations.

Notation:

$$
\begin{gathered}
\mathbb{N}=\{0,1,2,3, \ldots\} \\
\mathbb{R}_{\geq 0}=\{x \in \mathbb{R} \mid x \geq 0\} \\
a \text { divides } b \text { is denoted } a \mid b
\end{gathered}
$$

Question 1. Let P and Q be propositions
(a) Give one example of a sentence which is a proposition. Give one example of a sentence which is not a proposition. These can be mathematical or any other type of sentences.

Solution: Some examples of propositions: Two plus two equals four. Two plus two equals five. Right now the sky is blue. $\forall x, 3+x=7$. Some examples which are not propositions: Does two plus two equal 4? I always tell lies. $3+x=7$ (does not have truth value unless \mathbf{x} is specified or there is a quantifier).
(b) If P is false and Q is true, what is the truth value of $P \Longrightarrow Q$. This often confuses people when they first learn about " \Longrightarrow ". Explain why this is the right way to define " \Longrightarrow " with the help of an example (in mathematical or everyday language) of propositions P and Q.
Solution 1: $\mathrm{P}=" 2+2=5 ", \mathrm{Q}=" 1+1=2 "$. We can obtain Q from P by multiplying both sides of P by zero and then adding 1 to both sides twice.
Solution 2: $\mathrm{P}=$ "It is Monday", $\mathrm{Q}=$ " I will wear a hat". Then $P \Longrightarrow Q$ is the same as the statement "If it is Monday then I will wear a hat". Now if today is Tuesday and I am wearing a hat am I a truth teller or a liar. In my if ..then.. statement I did not claim anything about Tuesday. So no matter if I wear a hat or not on Tuesday I was telling the truth.
(c) Determine if $(P \Longrightarrow Q) \vee(Q \Longrightarrow P)$ is a tautology or not by using a truth table. Be sure to state your conclusion.
Solution:

P	Q	$(P \Longrightarrow Q)$	$(Q \Longrightarrow P)$	$(P \Longrightarrow Q) \vee(Q \Longrightarrow P)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

The proposition $(P \Longrightarrow Q) \vee(Q \Longrightarrow P)$ is thus a tautology as it is true in all cases, regardless of the truth value of the individual propositions P and Q.

Question 2. For each statement below, indicate if it is TRUE(T) or FALSE(F). No justification is needed. Write your answers in your exam booklet in a table like this

	a	b	c	d	e	f	g	h	i	j
T/F	F	T	F	F	T	T	F	F	F	T

(a) $f:\{1,2,3\} \rightarrow\{1,3\}$ defined by $f(x)=x$ is a function.

F: f is not defined at all elements in the domain. In particular $f(2)$ is not defined
(b) $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ defined by $f(x)=x^{2}$ is a bijection.

T : The function is a bijection because $y=x^{2}$ has a unique solution for all $y \in \mathbb{R}_{\geq 0}$.

Also we can see that x^{2} has a well-defined inverse \sqrt{x} for $x \geq 0$.
(c) $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=x^{2}$ is a bijection.

F: Not surjective. For example there is no element that maps to 3. That is $f(x)=x^{2}=3$ does not have a natural number solution.
(d) The cardinalities of \mathbb{N} and \mathbb{Z} are different because \mathbb{Z} is essentially double \mathbb{N}.

F: As discussed in class these have the same cardinality. For example here is a bijection

$$
f(n)= \begin{cases}-\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

(e) The cardinalities of \mathbb{Q} and \mathbb{R} are different even though every real number can be approximated to arbitrary accuracy by rational numbers.
T: We discussed Cantor's diagonal argument in class that proves \mathbb{Q} and \mathbb{R} have different cardinalities. The ideas of the proof was to show that there can be no surjection.
(f) Let A be a finite set with cardinality $|A|=n$.
$|\mathcal{P}(A \times A)|="$ the cardinality of the power set of the cartesian product $A \times A "=\left(2^{n}\right)^{n} ?$
$\mathrm{T}:|\mathcal{P}(A \times A)|=2^{|A \times A|}=2^{\left(n^{2}\right)}=2^{(n \cdot n)}=\left(2^{n}\right)^{n}$
(g) Let $P(x)$ and $Q(y)$ be propositions depending on variables x and y respectively.

The negation of $\forall x \exists y(P(x) \Longrightarrow Q(y))$ is $\exists y \forall x(P(x) \wedge \neg Q)$.
F: $\forall x R(x)$ negates to $\exists x \neg R(x)$.
(h) Define a relation \sim on \mathbb{R} by $x \sim y$ if and only if $x^{2} \leq y^{2}$.

The relation \sim defines a partial order on \mathbb{R}.
F: If $x=-1$ and $y=1$ then $x^{2} \leq y^{2}$ and $y^{2} \leq x^{2}$, but $x \neq y$. So the relation is not antisymmetric.
(i) If A and B are sets such that $A \times B=B \times A$ then $A=B$

F: This was from the homework. If A is any set and $B=\emptyset$ then $A \times B=B \times A=\emptyset$.
(j) Let A and B be finite sets. If $|B|>|A|$ then there exists an injection $f: A \rightarrow B$.

T : See the homework. This is difficult to prove in general, but for finite sets it is easier.

Question 3. (a) State the inclusion-exclusion principle for 3 sets.
Solution: $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$.
(b) How many 7 digit numbers in \mathbb{N} start or end with the digits 21. For example 2156973, 2982721.

Solution: There are 10^{5} numbers that start with 21 and 9×10^{4} numbers that end in 21 because numbers can't start with a zero (only one point was taken off in case this was missed). There are 10^{3} numbers both starting and ending with 21 . Using inclusion-exclusion for 2 sets, the answer is $100000+90000-1000=189000$
(c) Use induction to prove that for all $n \in \mathbb{N}, n \geq 1$,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution: To prove the formula using induction, we'll start by verifying the base case when $\mathrm{n}=1$:

When $\mathrm{n}=1$:

$$
\sum_{k=1}^{1} k^{2}=1^{2}=1
$$

And

$$
\frac{1(1+1)(2(1)+1)}{6}=\frac{1(2)(3)}{6}=1
$$

The formula holds for $n=1$.
Next, we'll assume that the formula holds for some arbitrary positive integer k, and then prove that it also holds for $k+1$.

Assuming the formula holds for k :

$$
\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Now, let's consider the sum for $k+1$:

$$
\sum_{i=1}^{k+1} i^{2}=(k+1)^{2}+\sum_{i=1}^{k} i^{2}
$$

Now use the induction assumption.

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6} \\
& =\frac{6(k+1)^{2}+k(k+1)(2 k+1)}{6} \\
& =\frac{(k+1)(6(k+1)+k(2 k+1))}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
\end{aligned}
$$

We have the expression in the same form as the original formula, but with $k+1$ substituted for n. Thus, by induction, we have shown that the formula holds for all $n \geq 1$. Note: It's probably easier to expand the above expression and compare with the expansion of what we are trying to show with $n=k+1$, but factoring is more fun!

Therefore, the equation

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

holds for all $n \geq 1$.
(d) Consider the permutation $\rho=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 2 & 1 & 8 & 3 & 4 & 7\end{array}\right)$. Write ρ^{2} as a product of disjoint cycles.
solution: $\rho^{2}=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 6 & 5 & 7 & 2 & 1 & 4\end{array}\right)=(18457)(236)$

Question 4. Consider the weighted graph $G=(V, \mathcal{E}, w)$ where the vertex set is $V=\{A, B, C, D, E\}$, the edge set is $\mathcal{E}=\{\{A, C\},\{A, D\},\{A, E\},\{B, E\},\{C, E\},\{D, E\}\}$ and the weights are $w(\{A, C\})=4, w(\{A, D\})=10, w(\{A, E\})=8, w(\{B, E\})=2, w(\{C, E\})=9, w(\{D, E\})=$ 6.
(a) Make a large clear sketch of the graph. It is suggested that you draw it as a regular pentagon.

(b) Find a minimal spanning tree of G using a greedy algorithm. Your answer can be a sketch. Briefly explain each step in your selection of edges.
Solution:
To find a minimum spanning tree (MST) using Prim's algorithm, we: (1) Initialize a tree with a single vertex, chosen arbitrarily from the graph. (2) Grow the tree by one edge: Of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and transfer it to the tree. (3) Repeat step 2 until all vertices are in the tree.

Let's go step by step:
Step 1: Start with vertex A as the initial tree.
Step 2: Look for the minimum weight edge that connects the current tree to a vertex outside the tree. Add that vertex and the edge to the MST. Minimum weight edge is A,C. MST: $\{\mathrm{AC}\}$ (just writing the edges and not the vertices)
Step 3: Minimum weight edge is A,E. MST: \{AC, AE $\}$
Step 4: . Minimum weight edge is B,E. MST: $\{\mathrm{AC}, \mathrm{AE}, \mathrm{BE}\}$
Step 5: Minimum weight edge is D,E. MST: $\{\mathrm{AC}, \mathrm{AE}, \mathrm{BE}, \mathrm{DE}\}$
Step 6: All vertices have been included in the MST, so the algorithm is complete.
The final MST starting at vertex A is: MST: $\{\mathrm{AC}, \mathrm{AE}, \mathrm{BE}, \mathrm{DE}\}$

Or, redrawing to look more like a tree.

(c) Use a greedy algorithm to find a (vertex) colouring of G. Your answer can be a sketch.

(d) What is the chromatic number of G. Justify your answer.

We can see that vertices A, C, and E form a complete subgraph K3 (a triangle), as they are pairwise adjacent. Thus, we have an instance of K3 within graph G.
Therefore, since graph G contains a subgraph isomorphic to K3, we can conclude that the chromatic number of graph G is at least 3 (lower bound). Additionally, since we were able to color graph G using three colors, we have shown that the chromatic number is at most 3 (upper bound).

Hence, we can state that the chromatic number of graph G is exactly 3 .

Question 5. (a) Find all solutions to the linear Diophantine equation: $60 x+33 y=9$.
Method A: Here is the standard but long solution.
To find all solutions to the Diophantine equation $60 x+33 y=9$, we will use the extended Euclidean algorithm. The first step is to find the greatest common divisor (GCD) of 60 and 33.

Step 1: Find the GCD of 60 and 33.
Using the Euclidean algorithm:

$$
\begin{aligned}
60 & =1 \times 33+27 \\
33 & =1 \times 27+6 \\
27 & =4 \times 6+3 \\
6 & =2 \times 3+0
\end{aligned}
$$

So the GCD of 60 and 33 is 3 . Since $3 \mid 9$ we know there is a solution to the Diophantine equation.
Step 2: Express the GCD (3) as a linear combination of 60 and 33.
Using the Euclidean algorithm backward:

$$
\begin{aligned}
3 & =27-4 \times 6 \\
& =27-4 \times(33-27) \\
& =5 \times 27-4 \times 33 \\
& =5 \times(60-33)-4 \times 33 \\
& =5 \times 60-9 \times 33
\end{aligned}
$$

Therefore $15 \times 60-27 \times 33=9$.
Thus, we have found one solution to the equation $60 x+33 y=3$, which is $x_{0}=15$ and $y_{0}=-27$.

Step 3: Find all solutions by adding all solution of $60 x+33 y=0$ which, by reducing to the equivalent equation $20 x+11 y=0$ by dividing by the GCD, is seen to be $x=11 n$, $y=-20 n$.
All solution of the Diophantine equation are

$$
\begin{aligned}
& x=15+11 n \\
& y=-27-20 n
\end{aligned}
$$

for $n \in \mathbb{Z}$.

Method B:

Dividing the equation by 3 we get $20 x+11 y=3$ which cannot be reduced further since 11 is a prime. To get the units digit to be 3 , we see y has to end in a 3 or 7 . We see that $x_{0}=4,0=-7$ is a solution. The solutions to $20 x+11 y=0$, is $x=11 n, y=-20 n$. So the general solution to the Diophantine equation is $x=15+11 n, y=-27-20 n$ for $n \in \mathbb{Z}$.
(b) Depending how you solve this problem it may be useful to recall that

- $a \mid b$ is an order relation.
- Let p be a prime and $a_{i} \in \mathbb{Z}$. If $p \mid a_{1} a_{2} \cdots a_{n}$ then $p\left|a_{1} \vee p\right| a_{2} \vee \cdots \vee p \mid a_{n}$. A special case is that if $p \mid a b$ then p divides a or p divides b.

Let p be a prime and $n \in \mathbb{N}$. Prove that the set of divisors of p^{n} is $\left\{1, p, p^{2}, \ldots p^{n-1}, p^{n}\right\}$.
Solution:
Let D be the let of divisors of p^{n}. We need to show (A) $D \subseteq\left\{1, p, p^{2}, \ldots p^{n-1}, p^{n}\right\}$ and, (B) $D \supseteq\left\{1, p, p^{2}, \ldots p^{n-1}, p^{n}\right\}$.
(A) For each $i=1, \ldots n$ we can write $p^{n}=p^{i} p^{n-i}$. Since p^{i} divides the right-hand side, it also divides the left. So $p^{i} \in D$ for $i=1, \ldots, n$, and thus we have shown (A).
(B) Let $q \in D$. By the fundamental theorem of arithmetic, q can be written as a product of primes. That is $q=p_{1} \cdot p_{2} \cdots p_{m}$. Now for each $k=1 \ldots m, p_{k} \mid q$. Since $q \mid p^{n}$, by transitivity of divisibility order relation, we have $p_{k} \mid p^{n}$ and by applying the given theorem we have $p_{k} \mid p$. So $p_{k}=1$ or p. Thus $q=p^{r}$, and $r \leq n$ as $q \leq p^{n}$. So we have shown (B) which completes the proof.
(B) can also be proved by invoking the uniqueness of prime factorization: As the factorization of p^{n} is $p^{n}=p \cdot p \cdots p$, there can be no other prime factor of p^{n} except p. Then use the argument in (B) above for any q that divides p^{n}.

Many people tried as inductive proof, which is possible but it requires the same argument as in step (B), so is of no advantage.

