
MS-A0402 Foundations of Discrete Mathematics IV/2023 Radnell

MS-A0402 / Period IV 2023

Final Exam, 21.04.2023 - SOLUTIONS

No calculators or notes of any kind are allowed.

This exam consists of 5 problems, each of equal weight.
All answers must be justified with appropriate reasoning and calculations.

Notation: N = {0, 1, 2, 3, ...}
R≥0 = {x ∈ R |x ≥ 0}

a divides b is denoted a|b

Question 1. Let P and Q be propositions

(a) Give one example of a sentence which is a proposition. Give one example of a sentence
which is not a proposition. These can be mathematical or any other type of sentences.

Solution: Some examples of propositions: Two plus two equals four. Two plus two equals
five. Right now the sky is blue.∀x, 3 + x = 7. Some examples which are not propositions:
Does two plus two equal 4? I always tell lies. 3 + x = 7 (does not have truth value unless x
is specified or there is a quantifier).

(b) If P is false and Q is true, what is the truth value of P =⇒ Q. This often confuses people
when they first learn about "=⇒". Explain why this is the right way to define "=⇒" with the
help of an example (in mathematical or everyday language) of propositions P and Q.

Solution 1: P="2 + 2 = 5", Q = "1 + 1 = 2". We can obtain Q from P by multiplying both
sides of P by zero and then adding 1 to both sides twice.

Solution 2: P="It is Monday", Q ="I will wear a hat". Then P =⇒ Q is the same as the
statement "If it is Monday then I will wear a hat". Now if today is Tuesday and I am wearing
a hat am I a truth teller or a liar. In my if ..then.. statement I did not claim anything about
Tuesday. So no matter if I wear a hat or not on Tuesday I was telling the truth.

(c) Determine if (P =⇒ Q)∨ (Q =⇒ P ) is a tautology or not by using a truth table. Be sure to
state your conclusion.

Solution:
P Q (P =⇒ Q) (Q =⇒ P ) (P =⇒ Q) ∨ (Q =⇒ P )
T T T T T
T F F T T
F T T F T
F F T T T
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The proposition (P =⇒ Q) ∨ (Q =⇒ P ) is thus a tautology as it is true in all cases,
regardless of the truth value of the individual propositions P and Q.

Question 2. For each statement below, indicate if it is TRUE(T) or FALSE(F). No justification is
needed. Write your answers in your exam booklet in a table like this

a b c d e f g h i j
T/F F T F F T T F F F T

(a) f : {1, 2, 3} → {1, 3} defined by f(x) = x is a function.

F: f is not defined at all elements in the domain. In particular f(2) is not defined

(b) f : R≥0 → R≥0 defined by f(x) = x2 is a bijection.

T: The function is a bijection because y = x2 has a unique solution for all y ∈ R≥0.

1 2 3 4
1
4
9

16

25

x

y

Also we can see that x2 has a well-defined inverse
√
x for x ≥ 0.

(c) f : N → N defined by f(x) = x2 is a bijection.

F: Not surjective. For example there is no element that maps to 3. That is f(x) = x2 = 3
does not have a natural number solution.

(d) The cardinalities of N and Z are different because Z is essentially double N.

F: As discussed in class these have the same cardinality. For example here is a bijection

f(n) =

{
−n

2
if n is even

n+1
2

if n is odd

(e) The cardinalities of Q and R are different even though every real number can be approxi-
mated to arbitrary accuracy by rational numbers.

T: We discussed Cantor’s diagonal argument in class that proves Q and R have different
cardinalities. The ideas of the proof was to show that there can be no surjection.

(f) Let A be a finite set with cardinality |A| = n.

|P(A×A)| = " the cardinality of the power set of the cartesian product A×A ” = (2n)n ?

T: |P(A× A)| = 2|A×A| = 2(n
2) = 2(n·n) = (2n)n
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(g) Let P (x) and Q(y) be propositions depending on variables x and y respectively.

The negation of ∀x∃y(P (x) =⇒ Q(y)) is ∃y∀x(P (x) ∧ ¬Q).

F: ∀xR(x) negates to ∃x¬R(x).

(h) Define a relation ∼ on R by x ∼ y if and only if x2 ≤ y2.

The relation ∼ defines a partial order on R.

F: If x = −1 and y = 1 then x2 ≤ y2 and y2 ≤ x2, but x ̸= y. So the relation is not
antisymmetric.

(i) If A and B are sets such that A×B = B × A then A = B

F: This was from the homework. If A is any set and B = ∅ then A×B = B × A = ∅.

(j) Let A and B be finite sets. If |B| > |A| then there exists an injection f : A → B.

T: See the homework. This is difficult to prove in general, but for finite sets it is easier.

Question 3. (a) State the inclusion-exclusion principle for 3 sets.

Solution: |A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

(b) How many 7 digit numbers in N start or end with the digits 21. For example 2156973, 2982721.

Solution: There are 105 numbers that start with 21 and 9×104 numbers that end in 21 because
numbers can’t start with a zero (only one point was taken off in case this was missed). There
are 103 numbers both starting and ending with 21. Using inclusion-exclusion for 2 sets, the
answer is 100000 + 90000− 1000 = 189000

(c) Use induction to prove that for all n ∈ N , n ≥ 1,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

Solution: To prove the formula using induction, we’ll start by verifying the base case when
n = 1:

When n = 1:
1∑

k=1

k2 = 12 = 1

And
1(1 + 1)(2(1) + 1)

6
=

1(2)(3)

6
= 1

The formula holds for n = 1.

Next, we’ll assume that the formula holds for some arbitrary positive integer k, and then
prove that it also holds for k + 1.
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Assuming the formula holds for k:

k∑
i=1

i2 =
k(k + 1)(2k + 1)

6

Now, let’s consider the sum for k + 1:

k+1∑
i=1

i2 = (k + 1)2 +
k∑

i=1

i2

Now use the induction assumption.

k+1∑
i=1

i2 = (k + 1)2 +
k(k + 1)(2k + 1)

6

=
6(k + 1)2 + k(k + 1)(2k + 1)

6

=
(k + 1)(6(k + 1) + k(2k + 1))

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

We have the expression in the same form as the original formula, but with k + 1 substituted
for n. Thus, by induction, we have shown that the formula holds for all n ≥ 1. Note: It’s
probably easier to expand the above expression and compare with the expansion of what we
are trying to show with n = k + 1, but factoring is more fun!

Therefore, the equation
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

holds for all n ≥ 1.

(d) Consider the permutation ρ =

(
1 2 3 4 5 6 7 8
5 6 2 1 8 3 4 7

)
. Write ρ2 as a product of disjoint

cycles.

solution: ρ2 =
(
1 2 3 4 5 6 7 8
8 3 6 5 7 2 1 4

)
= (18457)(236)
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Question 4. Consider the weighted graph G = (V, E , w) where the vertex set is V = {A,B,C,D,E},
the edge set is E = {{A,C}, {A,D}, {A,E}, {B,E}, {C,E}, {D,E}} and the weights are
w({A,C}) = 4, w({A,D}) = 10, w({A,E}) = 8, w({B,E}) = 2, w({C,E}) = 9, w({D,E}) =
6.

(a) Make a large clear sketch of the graph. It is suggested that you draw it as a regular pentagon.

A

B

CD

E

4

10

8

2

9
6

(b) Find a minimal spanning tree of G using a greedy algorithm. Your answer can be a sketch.
Briefly explain each step in your selection of edges.

Solution:

To find a minimum spanning tree (MST) using Prim’s algorithm, we: (1) Initialize a tree
with a single vertex, chosen arbitrarily from the graph. (2) Grow the tree by one edge: Of
the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge,
and transfer it to the tree. (3) Repeat step 2 until all vertices are in the tree.

Let’s go step by step:

Step 1: Start with vertex A as the initial tree.

Step 2: Look for the minimum weight edge that connects the current tree to a vertex outside
the tree. Add that vertex and the edge to the MST. Minimum weight edge is A,C. MST:
{AC} (just writing the edges and not the vertices)

Step 3: Minimum weight edge is A,E. MST: {AC, AE}

Step 4: . Minimum weight edge is B,E. MST: {AC, AE, BE}

Step 5: Minimum weight edge is D,E. MST: {AC, AE, BE, DE}

Step 6: All vertices have been included in the MST, so the algorithm is complete.

The final MST starting at vertex A is: MST: {AC, AE, BE, DE}
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A

B

CD

E

4

10

8

2

9
6

Or, redrawing to look more like a tree.

A

C E

B D

4 8

2 6

(c) Use a greedy algorithm to find a (vertex) colouring of G. Your answer can be a sketch.

A

B

CD

E

(d) What is the chromatic number of G. Justify your answer.

We can see that vertices A, C, and E form a complete subgraph K3 (a triangle), as they are
pairwise adjacent. Thus, we have an instance of K3 within graph G.

Therefore, since graph G contains a subgraph isomorphic to K3, we can conclude that the
chromatic number of graph G is at least 3 (lower bound). Additionally, since we were able
to color graph G using three colors, we have shown that the chromatic number is at most 3
(upper bound).
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Hence, we can state that the chromatic number of graph G is exactly 3.

Question 5. (a) Find all solutions to the linear Diophantine equation: 60x+ 33y = 9.

Method A: Here is the standard but long solution.

To find all solutions to the Diophantine equation 60x + 33y = 9, we will use the extended
Euclidean algorithm. The first step is to find the greatest common divisor (GCD) of 60 and
33.

Step 1: Find the GCD of 60 and 33.

Using the Euclidean algorithm:

60 = 1× 33 + 27

33 = 1× 27 + 6

27 = 4× 6 + 3

6 = 2× 3 + 0

So the GCD of 60 and 33 is 3. Since 3|9 we know there is a solution to the Diophantine
equation.

Step 2: Express the GCD (3) as a linear combination of 60 and 33.

Using the Euclidean algorithm backward:

3 = 27− 4× 6

= 27− 4× (33− 27)

= 5× 27− 4× 33

= 5× (60− 33)− 4× 33

= 5× 60− 9× 33

Therefore 15× 60− 27× 33 = 9.

Thus, we have found one solution to the equation 60x + 33y = 3, which is x0 = 15 and
y0 = −27.
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Step 3: Find all solutions by adding all solution of 60x + 33y = 0 which, by reducing to
the equivalent equation 20x + 11y = 0 by dividing by the GCD, is seen to be x = 11n ,
y = −20n.

All solution of the Diophantine equation are

x = 15 + 11n

y = −27− 20n

for n ∈ Z.

Method B:
Dividing the equation by 3 we get 20x + 11y = 3 which cannot be reduced further since
11 is a prime. To get the units digit to be 3, we see y has to end in a 3 or 7. We see that
x0 = 4,0= −7 is a solution. The solutions to 20x + 11y = 0, is x = 11n , y = −20n. So
the general solution to the Diophantine equation is x = 15+11n, y = −27−20n for n ∈ Z.

(b) Depending how you solve this problem it may be useful to recall that

• a|b is an order relation.

• Let p be a prime and ai ∈ Z. If p|a1a2 · · · an then p|a1 ∨ p|a2 ∨ · · · ∨ p|an. A special
case is that if p|ab then p divides a or p divides b.

Let p be a prime and n ∈ N. Prove that the set of divisors of pn is {1, p, p2, . . . pn−1, pn}.

Solution:

Let D be the let of divisors of pn. We need to show (A) D ⊆ {1, p, p2, . . . pn−1, pn} and, (B)
D ⊇ {1, p, p2, . . . pn−1, pn}.

(A) For each i = 1, . . . n we can write pn = pipn−i. Since pi divides the right-hand side, it
also divides the left. So pi ∈ D for i = 1, . . . , n, and thus we have shown (A).

(B) Let q ∈ D. By the fundamental theorem of arithmetic, q can be written as a product of
primes. That is q = p1 ·p2 · · · pm. Now for each k = 1 . . .m, pk|q. Since q|pn, by transitivity
of divisibility order relation, we have pk|pn and by applying the given theorem we have pk|p.
So pk = 1 or p. Thus q = pr, and r ≤ n as q ≤ pn. So we have shown (B) which completes
the proof.

(B) can also be proved by invoking the uniqueness of prime factorization: As the factoriza-
tion of pn is pn = p · p · · · p, there can be no other prime factor of pn except p. Then use the
argument in (B) above for any q that divides pn.

Many people tried as inductive proof, which is possible but it requires the same argument as
in step (B), so is of no advantage.
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