

Cell Biology CHEM-E8120

Course overview

Course based on the materials and course structure created by Prof. Alexander Frey.

In case of questions...

- If you have questions, please ask after lectures or send email (<u>sesilja.aranko@aalto.fi</u>)
- Usually answering within a day (if not answering within couple of days, please remind!)
- For questions related to enrollment etc. practical issues, also learning services can help

Prequestionary – who are you?

- Where are you from and what are you interested in?
- https://presemo.aalto.fi/cellbpreq

Learning outcomes

After the course you will be able to:

- Appreciate the different levels of biological organization, from molecules to cells
- Understand the biological processes critical for cellular functioning
- Can integrate the different processes into the proper cellular context
- Asses the function of regulatory pathways and networks at the cellular level
- Describe the general principles of gene organization and expression
- Critically analyze experimental data

Focus on eukaryotes

Course content

12 lectures, two assignments, and a final exam:

- . **Assignment I** is a **group assignment**, in which you will work jointly on **an essay.**
- In assignment II, you will be given a real example of research data from a scientific article.
- In the **final exam** you will apply the learnings from the course to **analyze scientific data** that is related to the course topics.

Study materials

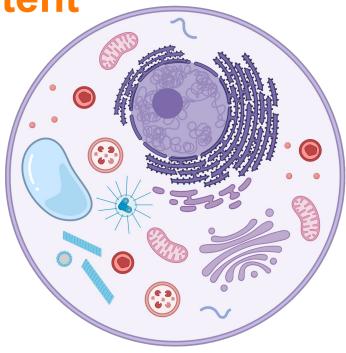
Text book:

- Molecular biology of the cell / Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts,
 Peter Walter, 6th edition, Published: Garland Science, New York, 2014.
- See slides for pages/chapters covered.
- Lecture notes made available via MyCourses pages
- Other material made available via MyCourses pages

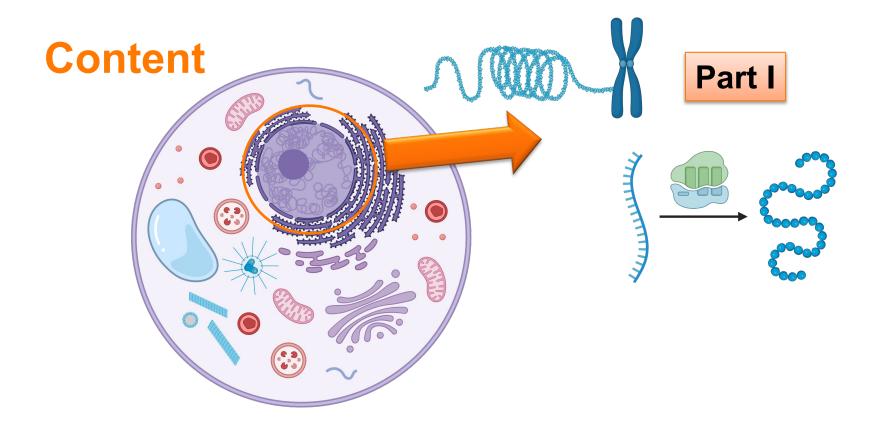
Alternative text book

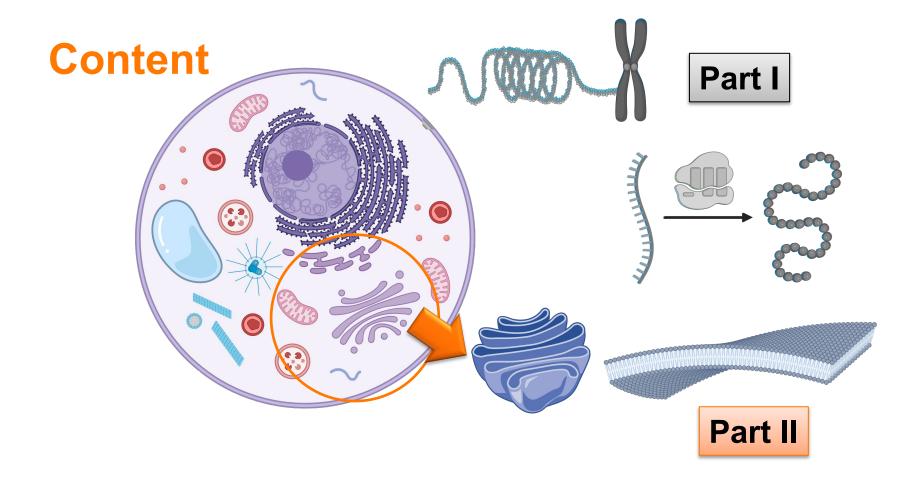
- Molecular Cell Biology
 - Lodish, Berk, Kaiser, Krieger, Scott, Bretscher, Ploegh Matsudaira, published by Freeman and Company

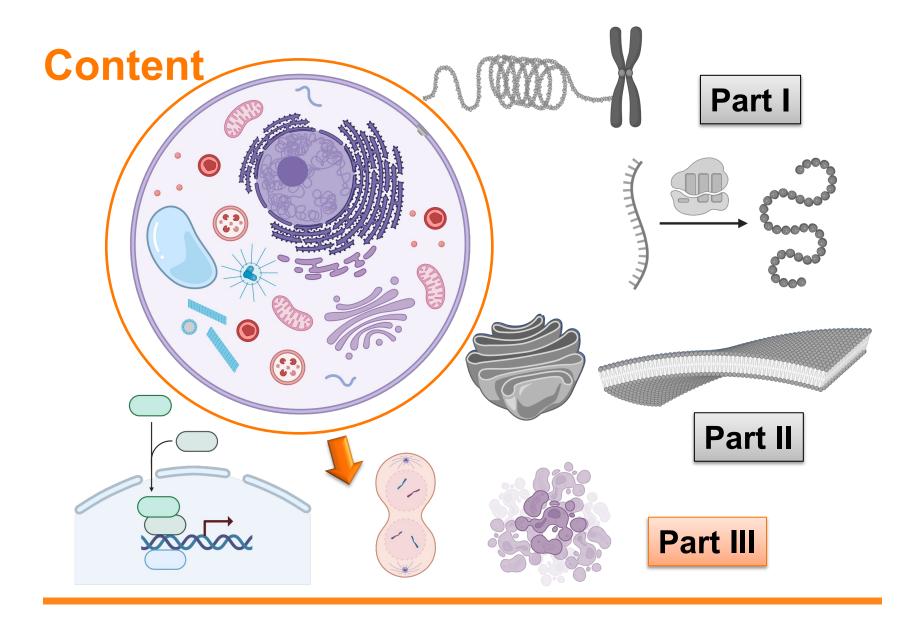
Lectures


- Lecture materials are based on the textbook
 - They are used illustrate and discuss selected topics
 - You will need to also study the book in addition to lectures
 - Lectures will support your learning and the assignments

Evaluation and Grading of course


- Grading is based on:
 - Examination (50%)
 - Assignments (50%)
 - Assignment I (Essay) (30%)
 - Assignment II (Research paper) (20%)


- Grading: Fail, 1-5;
- Instructions for assignments and evaluation criteria are provided on the course homepage


Content

The Cell

Course overview – Tentative schedule

Date	Lecture		Chapters & Topics	Assignments
25.10.	1		Course overview, DNA, Chromosomes, Genome, Ch. 4	
27.10.	2 -G	art 1	Replication, Repair, Recombination, Ch. 5	
1.11.	3	Д.	From DNA to protein, Ch. 6	
3.11.	4		Control of gene expression, Ch. 7	
8.11.	5		Membrane structures, Ch. 10	Assignment I (Essay) Draft I (8.11.)
10.11.	6 -G	t 2	Membrane transport, Ch. 11	
15.11.	7	Part	Intracellular compartments and protein sorting, Ch. 12	Assignment II – Draft I (15.11.)
17.11.	8		Membrane Traffic, Ch. 13	+iGEM intro
22.11.	9		Cell signalling, Ch. 15	Assignment II – Peer review (22.11.)
24.11.	10 -G	т 3	Cell signalling, Ch. 15	Assignment I (Essay) Draft II (24.11.)
29.11.	11	Pal	Cell cycle, Ch. 17	
1.12.	12		Apoptosis, Ch. 18	Assignment II – final version (1.12.)
7.12.	EXAM		December 7th	
8.12.	Final version essay		December 8th	Assignment I (Essay) Final version (8.12.) Aim at finishing before exam date. Use last days for polishing.

Examinations

- Examinations are scheduled for:
 - 07.12.2022, 14:00 to 18:00 Ke1
 - 19.02.2023, 09:00 to 13:00 Ke1
- Exam consists of problem-solving questions

Home assignments

- Essay writting (in groups):
 - Goal: Connect the topics covered in the course into a bigger entity
 - Drafts and final versions need to be submitted
 - Writing should accompany the lectures and motivate to work with lecture materials and textbook
 - Total length 4000-5000 words (10-12 pages)
 - Instructions given + made available at MyCourses after the 2nd lecture
 - Assignment to groups before that, list will be posted in MyCourses (if late enrollments, may be updated till 30th)
- Analysis of a research paper (individually):
 - Goal: Learn to analyze scientific data and understand the approaches and methods that are used to create the data.
 - Two rounds of submissions + a peer-review
 - Instructions given on the 3rd lecture (+available online afterwards)

Assignments - deadlines

- Overall, there are 6 deadlines for submitting the assignments:
- Assignment I, Essay:
 - Draft I, November 8th, 23:00
 - Draft II, November 24th, 23:00
 - Final version, December 8th, 23:00
- Assignment II, Research paper:
 - Draft I, November 12th, 23:00
 - Peer-review, November 22nd, 23:00
 - Draft II, December 1st, 23:00

Using AI tools for assignments

- You can utilize to polish the language, as a dictionary etc.. But do not write the essay or any other text with ChatGPT.
- First of all, you will not learn anything, if doing that.
- Second, the quality is not high in scientific texts part of the text produced may be completely nonsense.
- Aalto guidelines:
 <u>https://www.aalto.fi/en/services/guidance-for-the-use-of-artificial-intelligence-in-teaching-and-learning-at-aalto-university</u>

Questions, comments?