

CHEM-E0115 Planning and Execution of a Biorefinery Investment Project (5 cr)

Lecture 3 – part 2 Project Controls September 21, 2023 Henni Matikainen & Pasi Gullsten

Agenda

- I. Introductions
- II. Scope Management
- III. Time Schedule Management
- **IV. Cost Management**

I. Introductions

Henni Matikainen

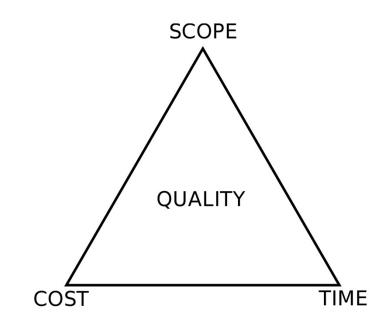
I. Work Experience

	•	AFRY, Finland: Project Planner, Schedule Management	05/2022 –
	•	Neste Finland & Germany: Project Engineer	03/2019 – 05/2022
		Scheduling	
		Cost Control	
		Cost Estimation	
		Education	
		Eddealion	
	•		03/2017 - 04/2019
18.	•		03/2017 – 04/2019
	•	Master of Science (Tech.), Aalto University, Finland • Fiber and Polymer Engineering	03/2017 – 04/2019 09/2013 – 03/2017
		Master of Science (Tech.), Aalto University, Finland Fiber and Polymer Engineering 	

Pasi Gullsten

I. Work Experience

•	AFRY, Finland: Senior Project Engineer, Cost Management	09/2022 –
•	Andritz, Finland & Chile: Project Commercial Manager/Director	10/2018 - 08/2022
•	 Andritz, Finland & overseas: Project Controller 2017-2019: Project controlling of fiberline global capital projects, based in Finland 2010-2016: Project controlling of large EPC pulp mill projects in Chile, Uruguay and B 	11/2010 – 02/2019 razil
•	Stora Enso, Spain: Development Engineer, Barcelona Mill	02/2010 - 08/2010
II.	Education	
•	Master of Science (Tech.), Aalto University, Finland Paper technology, Strategy & international business, Industrial management 	02/2009 – 11/2010
•	Doing Business in Latin America, Universidad Argentina de la Empresa	01/2009 – 05/2009
•	Bachelor of Science (Tech.), Helsinki University of Technology, FinlandPaper technology, Industrial management	09/2004 – 02/2009
•	Study exchange, Universidad Politécnica de Valencia, Spain	09/2005 - 06/2006


Aalto University School of Chemical Engineering

Learning Objectives

- I. To understand that it all depends on the Scope
- II. To understand the principles related to dynamic scheduling/control with Microsoft Project
- III. To understand the importance of Cost estimation and control in projects

Definitions - Project Management Triangle

Scope

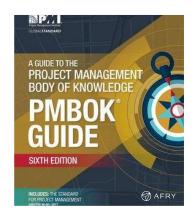
Requirements specified to achieve the end result. The overall definition of what the project is supposed to accomplish

Time

Time allocated to a project in order to meet scheduled deliverables and conclude all work by or before the project completion date

Cost

Budget and resources allocated to achieve project end result


Quality

is the fourth part of the project triangle. It sits at the center, where any change to any side affects it.

Resources

- I. Please read the PMBOK as it is usually the basis of company specific project management guidelines and processes!
- II. AACE International's Recommended Practices

II. Scope Management

Project Scope Management?

"Project Scope Management includes the processes required to ensure that the project includes **all the work** required, and **only the work** required, to complete project successfully." – PMI

"**Product scope.** The features and functions that characterize a product, service, or result" – PMI

-> Scope of Supply

"**Project scope.** The work that needs to be accomplished to deliver a product, service, or result." – PMI

-> Activities needed to deliver the Scope of Supply

Project Scope Management Processes

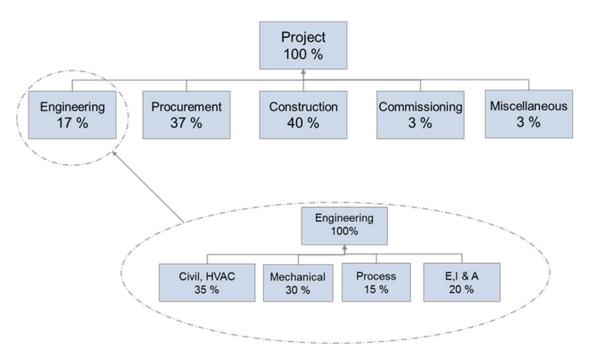
- I. Collect requirements
- II. Define Scope

III. Create Work Breakdown Structure (WBS)

i. "Create WBS is the process of subdividing project deliverables and project work into smaller, more manageable components." – PMI

IV. Define activities

i. "Define Activities is the process of identifying the specific actions to be performed to produce the project deliverables." – PMI


V. Verify Scope

VI. Control Scope

Work Breakdown Structure

10 golden rules of successful implementation

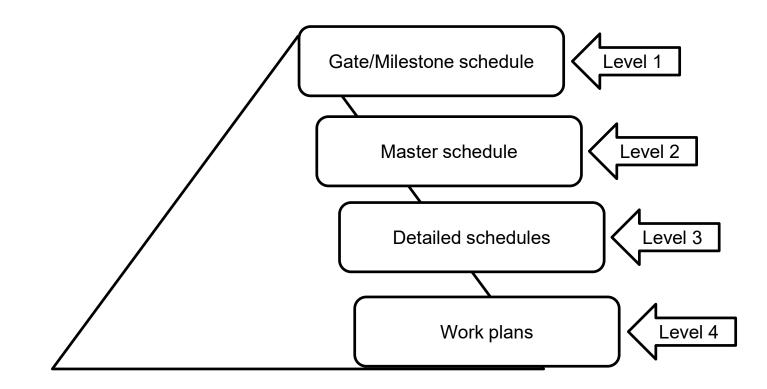
- 1. Be clear and precise when defining scope
- 2. Avoid words that leave room for interpretation
- 3. Do not assume, but communicate
- 4. Be careful with references to the Request for Proposal
- 5. Separate <u>technical</u> and legal/commercial <u>terms</u>
- 6. Document Management and Quality
- 7. Follow up and project change management
- 8. Scope-Time-Cost status and revision
- 9. Duty to warn
- 10. Client satisfaction

III. Time Schedule Management

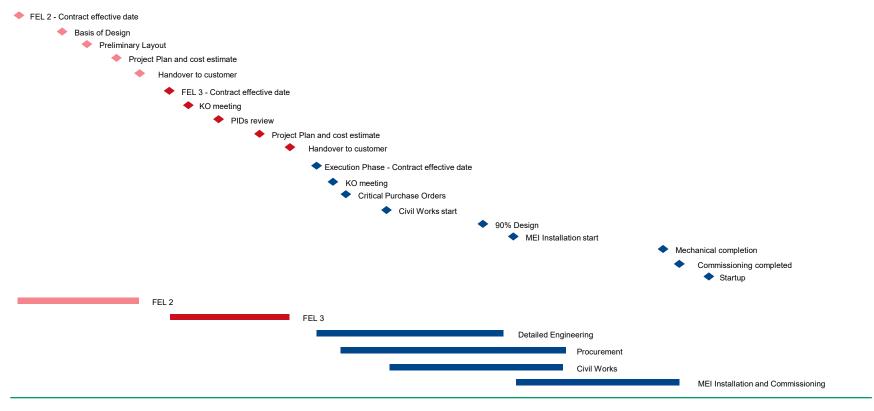
Case

Why scheduling? Is it important?

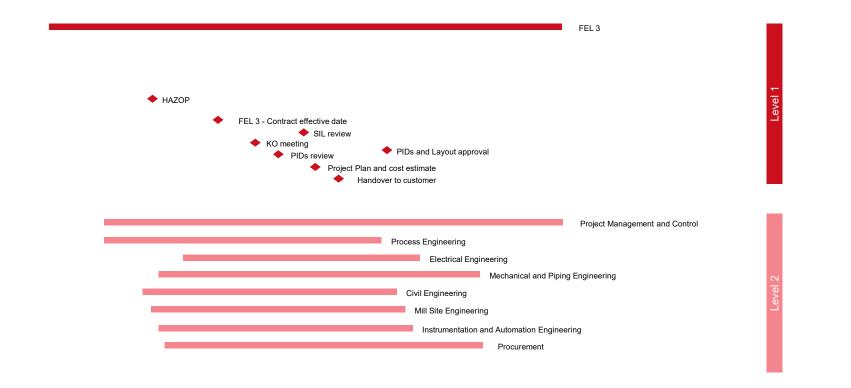
(Open discussion)


Time Schedule Basics

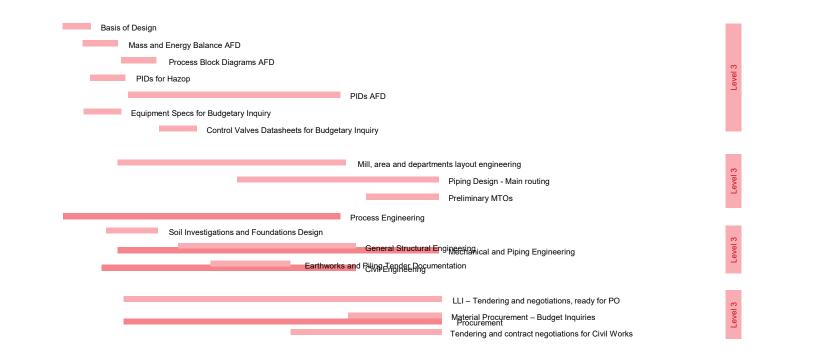
- Time schedule is an important tool to manage the project, not only for reporting
- Dynamic, complete and detailed schedule makes it easier to control the project
- Focus on the remaining work



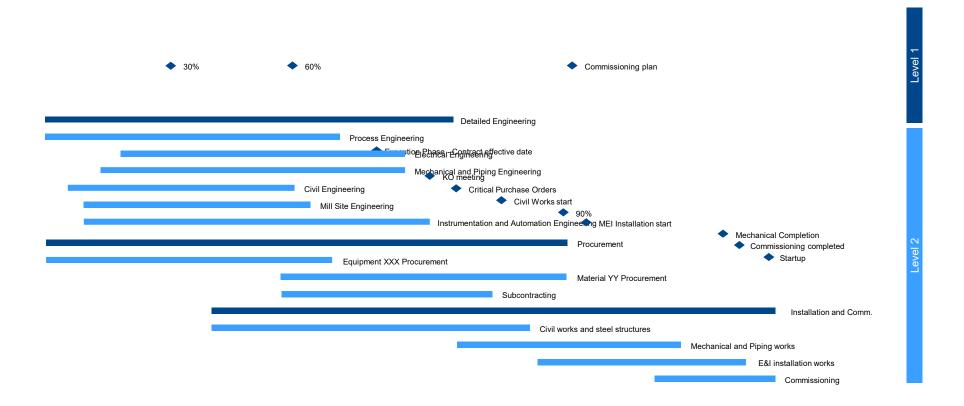
Schedule Hierarchy



Level 1 schedule – Overall Project Lifecycle



Level 2 schedule – FEL 3



Level 3 schedule – FEL 3

Level 2 schedule – Execution Phase

Schedule Definitions 1/2

Proposal time schedule

- Is prepared as part of the proposal package
- Defines the tasks to be executed during the project (a rough time schedule possibly with hidden dates)

Target time schedule for the whole project

- Is prepared typically as one deliverable of FEL1 and FEL2
- One page time schedule defining the time frame for the entire project including important project milestones, engineering, procurement and construction phases.

Master / area time schedule

• Defines engineering, procurement and construction phases in details for each process area.

Engineering time schedule

• Defines all the deliverables that are included in the scope and timelines for each deliverable. Schedule should be resource loaded with budgeted hours to make the progress follow-up and reporting more precise

Procurement time schedule

• Describes the work flow for engineering as well as procurement activities in the procurement process. Engineering is producing the enquiry specifications but is also dependent on the initial data from purchases/machine suppliers.

Schedule Definitions 2/2

Construction and Installation time schedule

- Time schedule for construction phase including all the civil tasks as well as installation activities. It should be logically linked to be able to follow the work flow at construction site. Could be done also with excel when the amount of details/activities are on hourly level.
- Installation time schedule which includes time schedules from each machine supplier and each contractor.
- The planner is coordinating all interfaces between suppliers.

Commissioning and start-up time schedules

• Detailed schedule for commissioning activities including all water run/commissioning groups defined with equipment, motors, I/O loops etc.

Aalto University School of Chemical Engineering

Document delivery schedules

- Is prepared during detailed engineering phase and usually part of the RFQs
- Schedule to be included in machine/equipment supplier's contracts defining delivery dates for documents needed as an initial data for engineering. Usually dates are defined as C+weeks (C=contract date) and format for the document can be excel or word.

Contract control schedules

- Is typically prepared during detailed engineering and is part of the RFQs.
- Schedule to be included in machine supplier's contracts and other contractors defining the dates for delivery, installation start and finish, commissioning dates, takeover and guarantee period. Format for the document can be excel or word.

Scheduling Process

i. Activity definition

 Scope (contract), PM maturity, organizational process capabilities, work breakdown structure

ii. Activity sequencing

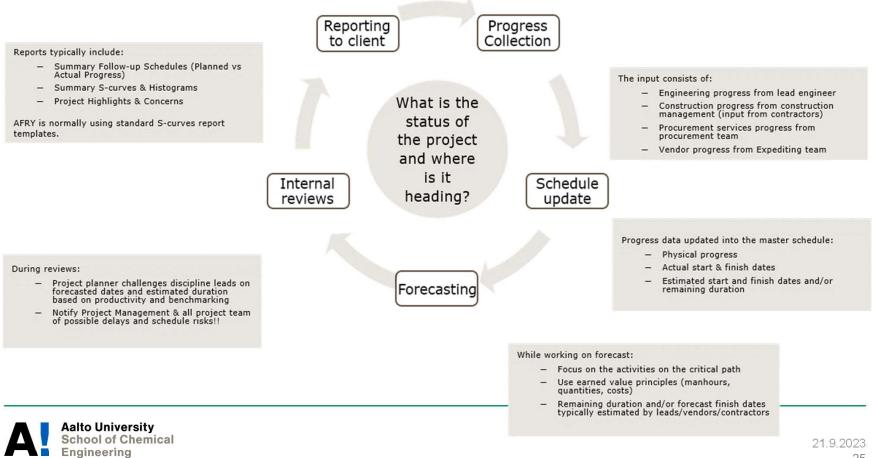
Identify and document relationships between activities (all dependencies, no open ends)

iii. Activity resource estimation

• Type and quantities of material, people, equipment, etc. to perform the activity

iv. Activity duration estimation

- Duration x Units = Work (not applicable for all tasks e.g. shipments)
- v. Schedule development
 - Analyze activity sequences, durations, resource requirements and constraints to create the project schedule


vi. Schedule control

 Measure project progress to update the schedule and manage changes to the baseline

Aalto University School of Chemical Engineering

Schedule Control - Process

Dynamic Scheduling and Control with Microsoft Project

Dynamic scheduling means the following:

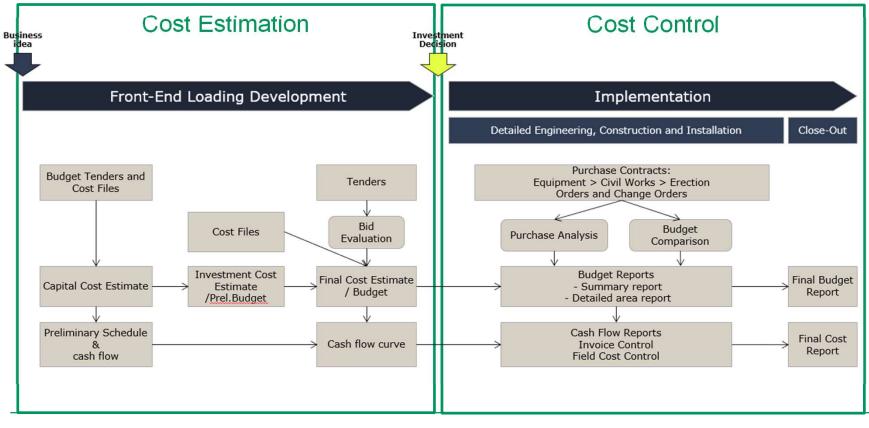
- i. Only one task does not have a predecessor (task that starts the project)
- ii. Only one task does not have a successor (task that ends the project)
- iii. Links or dependencies should be carefully selected so that you don't break the dynamism

Dynamic scheduling should be one thing that separates Microsoft Excel "schedules" from Microsoft Project "schedules"

Discussion around the potential implications of the failed Wärtsilä engine delivery to the project schedule?

(Open discussion)

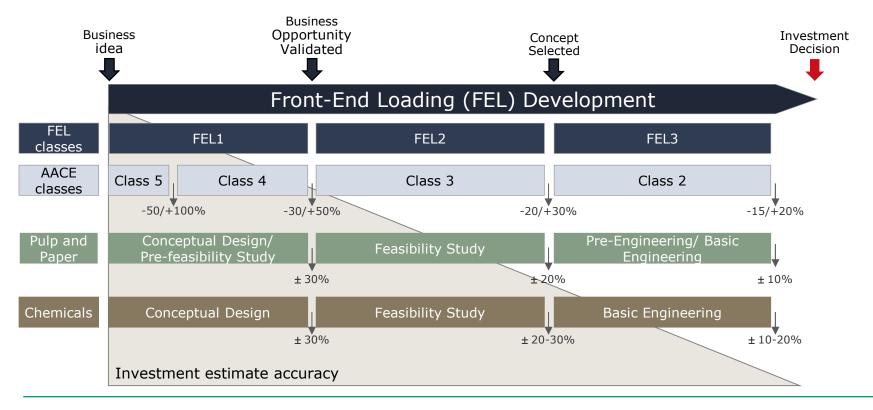
IV. Cost Management


Cost Management Basics

"Estimating, budgeting and controlling costs so that the project can be completed within the approved budget." – PMI

- I. Estimating: In order to estimate costs you need scope, time schedule, resource plan, contingency information, cost information about each activity and
- II. Budgeting: Cost aggregation + expert judgement (technical experts, historical experience, etc.)
- III. Cost control tools and techniques include: project team forecast compared to sales forecast, earned value management, performance reviews

Cost Management vs project life cycle


Aalto University School of Chemical Engineering

Investment Cost Estimate

- Investment cost estimate is one of the key deliverables what customers require to have in many projects
- The customer wants to know the total investment cost of the project before committing to the investment
- Cost estimate accuracy expectations are based on the project phase.

Project life cycle

CAPEX Estimation - Example

	omer ct Name ional Description	Cost estimate Summary - 1 000 EUR -										
Code	Cost Area	0 Indirect Costs	1 Civil Works	2 Machinery	3 Tanks & Towers	4 Piping	5 Electrification	6 Process Control	7 HVAC	8 Insulation	9 Spare Parts	0-9 Total
10 20 30 90	Area 1 Area 2 Area 3 Plant Common											
	Direct Costs, Total		-									
00 01 02 03 04	Indirect Costs: Temporary Facilities and Services Engineering Project and Construction Management Commissioning and Start-up											
	Base Estimate, Total											
	Breakdown, excluding contingency (%)											
	Contingencies, XX %											
	TOTAL											

CAPEX Estimation - Example

			Process Area 2	- 1 000 EUR -							
		ltem No.	Specification	Qty	Unit	Source	Unit Price	Material	Freight	Installation	TOTAL
20	2		Machinery								
20	2	1	Main machinery								
			According to XX quotation ABC12345-678 Date: XXX YY, 202X Delivery term: XXX Quoted price:								
			Scope:								
			Options:								
			· · · · ·								
			Exclusions:								
			Auxiliary equipment								
20	2	2	Pumps								
20	2	3	Heat exchangers								
			15.00								
20	2	4	Agitators								
			5								
20	2	5	Others								
								<u>.</u>			
20	2		Machinery - Total								

Aalto University School of Chemical Engineering

Cost Control – Example: Länsimetro

Original budget (2008) Index correction (= 19%)	714 million € 135 million €
Corrected budget	849 million €
Final costs without changes (= corrected budget + 9%)	933 million €
Final costs with scope changes (= corrected budget + 40%) (= original budget + 66%)	1186 million €

Aalto University School of Chemical Engineering

Toteutettu metro on enemmän kuin hankesuunnitelmassa määritelty

Mikäli länsimetron ensimmäinen vaihe olisi toteutettu vain hankesuunnitelman mukaisessa laajuudessa, kustannukset olisivat olleet arviolta <u>933 miljoonaa</u> <u>euroa ja kustannusylitys kaikkiaan alle 10 prosenttia suhteessa indeksikorjattuun</u> <u>hankesuunnitelmaan</u>. Arvioituna suhteessa hankesuunnitelman mukaiseen laajuuteen ja riskivaraus huomioiden, länsimetron kustannukset eivät poikkea merkittävästi suunnitellusta.

Rakentamisen aikana <u>Länsimetron ykkösvaiheessa toteutettavien töiden laajuus</u> <u>muuttui paljon hankesuunnitelmassa määritellystä</u>. Näillä muutoksilla metroa parannettiin ja sitä sovitettiin paremmin muuttuvaan kaupunkirakenteeseen, mutta muutokset myös vaikuttivat hankkeen kokonaiskustannuksiin. Ruoholahti-Matinkylä -osuuden <u>kokonaiskustannusennuste on 1 186 miljoonaa euroa</u>, ennusteeseen sisältyvät vielä toteutettavat aseman ympäristön hankkeet esimerkiksi Matinkylässä.

Hankkeen rakentamisen indeksikorjattu budjetti alkuperäisen hankesuunnitelman (2008) mukaiselle laajuudelle on 849 miljoonaa euroa (<u>hankesuunnitelma 714</u> miljoonaa euroa + indeksikorjaus 135 miljoonaa euroa).

[...] <u>https://www.lansimetro.fi/tietoa-hankkeesta/historia/nain-ykkosvaihe-</u> <u>rakentui/</u> 21.9.2023

36

What reasons are there for budget overruns?

(Open discussion)

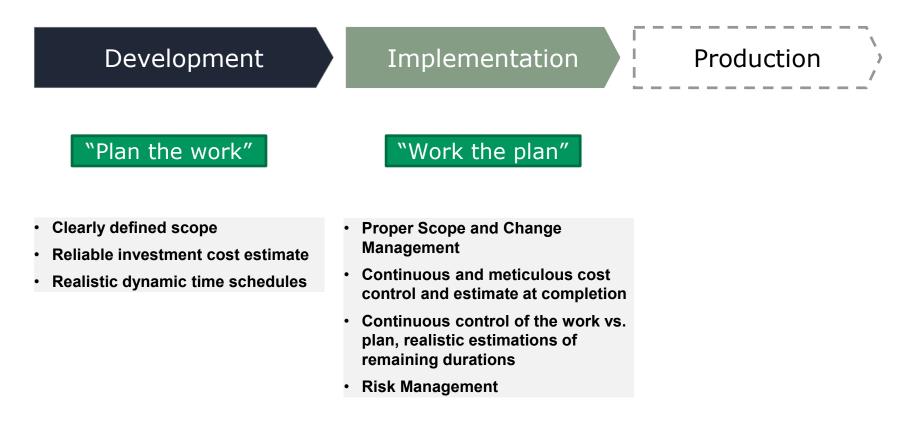
Budget overruns – some reasons

- Inaccurate Project Estimates (Cost, Time, Resource)
- Market situation (Uncertainties, Raw material prices, Inflation)
- Design mistakes
- Not Anticipating Change Orders/Scope Challenges
- Poor Site Management (Quality, Labour, Duration, Progress)
- Project Uncertainties (Unplanned costs etc)
- Inexperience of the Cost Estimator
- Lack of data or quality of the data at the time of the cost estimation (tendering, cost data)

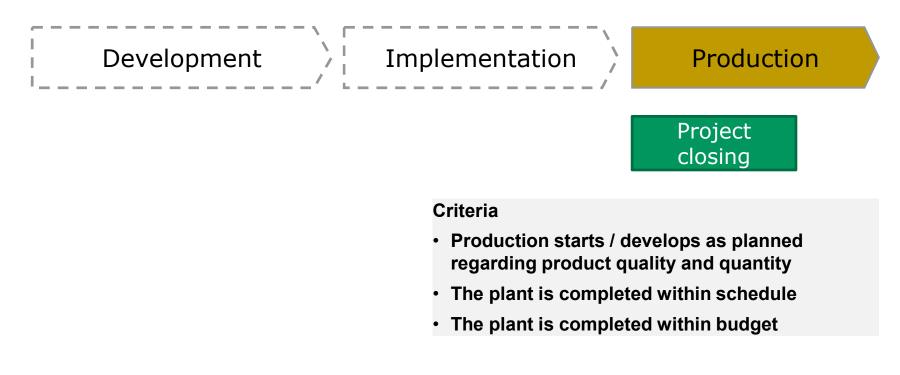
In a Nutshell

Successful Investment Project – Project Controls

Development


Implementation Production

- Clearly defined and structured scope
- Reliable investment cost estimate
- Realistic dynamic time schedules



Successful Investment Project – Project Controls

Successful Investment Project – Project Controls

Thank you!

Henni Matikainen & Pasi Gullsten AFRY Finland Oy henni.matikainen@afry.com pasi.gullsten@afry.com www.afry.fi

> 21.9.202 مر