The t Test
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Again, we begin with independent normal observations Xj. ..., X,, with unknown mean g and unknown
variance o2. The likelihood function
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For the hypothesis
Ho:p=po versus Hy:p# po,

the likelihood ratio test ( 2‘ )
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gives the maximum likelihood on the set p = pg.
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and we write s for the square root of the unbiased estimator of the variance
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1 Deriving the ¢ distribution

For the hypothesis test, our next goal is to understand the distribution of 7'(X).
Step 1. /(X — o)/ is a standard normal random variable.
For this, notice that X is a normal random variable with mean p and standard deviation o//n
Step 2. For each i, X; — X and X are independent.

For normal random variables, uncorrelated random variables are independent. Thus, it suffices to show
that the covariance is 0. To that end, note that

Cov(X; — X, X) = Cov(X;, X) — Cov(X, X).

For the first term, use the fact that Cov(X1, X;) = 0 if i # j and Cov(X1, X;) = Var(X;) = 0. Then,

. 1
Cov(X;, X) = — Z; Cov(X;, Xj) = Eaz.
j:
From Step 1, we know that

Cov(X, X) = Var(X) = 102.
n

Now combine to see that Cov(X; — X, X) = 0.
Step 3. >, (X; — X)?/0? is a y-square random variable with n — 1 degrees of freedom.



Let Z; = (X; — p)/o and 7 be the average of the Z;. Then Z; are independent standard normal random

variables.
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Let’s write this
Y=U+V.

By step 2, the sum is of independent random variables. So, if we use the properties of moment generating
functions
My(T’) = MU(T) . Mv(’f’).
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Now Y is a x2 random variable. So, My (r) = (1 — 2r) .V is a x? random variable. So, My (r) =

(1 —2r)Y/2. Consequently,
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and U is a x2_, random variable.
In summary, we can write
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where Z is a standard random variable, U is a x2_; random variable, and Z and U are independent.
Consequently, their densities are
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Step 4. Finding the density of T', fr(t).
Z and U have joint density
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Define the one to one transformation

Then, the inverse transformation




the joint density
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where |J(z,u)| is the absolute value of the Jacobian of the inverse transformation.
In this case,
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Finally, to find the marginal density for T', we integrate with respect to v to obtain
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Change variables by setting w = v(1 +t?/(n — 1)) /2.
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and n — oo. Thus, for large n, the t density is very close to the density of a standard normal.

2 Tests and confidence intervals using ¢ distribution

We can now return to our original hypothesis. The critical region for an alpha level test is determined by
the extreme values of the t statistic.
C={x[T(x)| = tas2}

where o
Correspondingly, the ~-level confidence interval is obtained by choosing o = 1 — - and setting
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For a one-sided hypothesis
Ho:p<po versus Hy:p > po,

the critical region becomes
C={xT(x) > ta}

3 Two sample t test

We now have a three dimensional parameter space © = {(u1, u2,02); 1 € R, s € R, 0% € R} ..
The two-sided test is

Hy:pp =ps versus Hi:pg # o,

The data Xy j,...,X,, ; are independent N (5, 0?) random variables, j = 1, 2.
The likelihood function is
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Then, the likelihood ratio,
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Write the unbiased estimators for the mean and the variance
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The maximum likelihood estimators in the numerator takes place on the set py = ps.
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The yields the test statistic
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Under the null hypothesis, T'(x1,x2) has a t distribution with n; + ny — 2 degrees of freedom. Now,
we can proceed as before in the single sample ¢ test in designing the test and constructing the confidence
interval. The case in which the variances are equal is called the pooled two-sample ¢ test..

If the relationship between the variance from the two samples is unknown, then the commonly used
approach is to set

and use the formula

for the degrees of freedom.



