LECTURE SCHEDULE

Mon (Pt) 12.15 - 14.00 Wed (Ke2) 10.15 - 12.00 Fri (Pt) 10.15 - 12.00

Date Topic

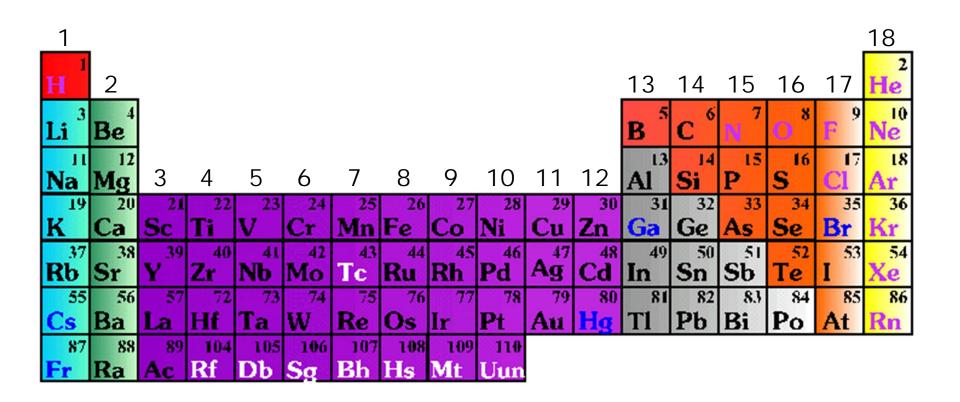
- 1. Wed 06.09. Course Introduction & Short Review on Elements & Periodic Table
- 2. Fri 08.09. Short Survey of Main Group Elements
- 3. Mon 11.09. Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
- 4. Wed 13.09. Transition Metals: General Aspects & Pigments
- 5. Fri 15.09. Redox Chemistry
- 6. Mon 18.09. Crystal Field Theory
- 7. Wed 20.09. V, Nb, Ta & Perovskites & Metal Complexes & MOFs & MLD
- 8. Mon 25.09. Cr, Mo, W & 2D materials & Mxenes & Layer-Engineering
- 9. Wed 27.09. Mn, Fe, Co, Ni, Cu
- 10. Fri 29.09. Cu & Magnetism & Superconductivity
- 11. Mon 02.10. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
- 12. Wed 04.10. Lanthanoids + Actinoids & Luminescence
 - Fri 06.10.
- 13. Wed 11.10. Resources of Elements & Rare/Critical Elements & Element Substitutions
- 14. Fri 13.10. Inorganic Materials Chemistry Research

EXAM: Tuesday Oct. 17, 9:00-12:00 in Ke2

PRESENTATION TOPICS/SCHEDULE

Wed 20.09. Nb: Mon 25.09. Mo: Wed 27.09. Mn: Naomi Lyle, Sanni Ilmaranta, Tomoki Nakayama Ru: Miklos Nemesszeghy ??? Fri 29.09. Cu: Koshila Hiruni, Kaushalya Poonanoo, Roger Peltonen Wed 04.10. Eu: Binglu Wang & Maryam Jafarishiad Nd: Patrich Wiesenfeldt ??? **U**: Miikka Viirto & Ashish Singh Wed 11.10. Co: Gabrielle Laurent & Yan Zheng In: Sonja Alasaukko-oja & Katri Haapalinna Te: Sofia Rantala ???

QUESTIONS: Lecture 2


Name your file Exe-3-Familyname; Return by noon tomorrow into MyCourses drop-box

- 1. Each of the following main group elements is specific/unique among all the elements, regarding at least one chemical or physical feature: B, F, He. Explain which feature.
- 2. For a hypothetical group of elements (Aa Ff) in Periodic Table, the following melting points have been reported: Aa 30 °C, Bb 100 °C, Cc 400 °C, Dd 550 °C, Ee 500 °C, Ff 250 °C. Based on this information, predict (with short explanations) the metallic versus non-metallic nature of each element. When combined with OH groups, do you expect Bb to form acidic or basic compound?

MAIN GROUP ELEMENTS

- Hydrogen: position in Periodic Table, isotopes, hydrides, hydrogen storage
- Alkali metals: group trends, Li-ion battery
- Alkaline earth metals versus alkali metals
- Boron group: crystal structures & melting points, boranes, borides, BNCT treatment, MgB₂ superconductor
- Isoelectronic; C-C and B-N, ultrahighpressure
- Nitrogen group: metal character and basicity of oxides (N < P < As < Sb < Bi)
- Multitude of sulphur compounds
- Lightest element versus other group members: F CI, Br, I
- Ionization energies and compounds of noble gases

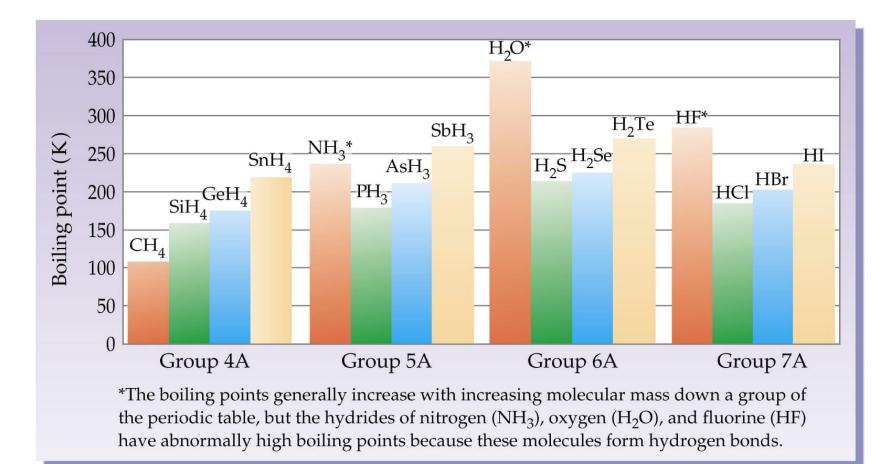
Where would you place hydrogen in Periodic Table ?

- 58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	\mathbf{Pm}	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	\mathbf{Fm}	Md	No	Lr

HYDROGEN in the Periodic Table:

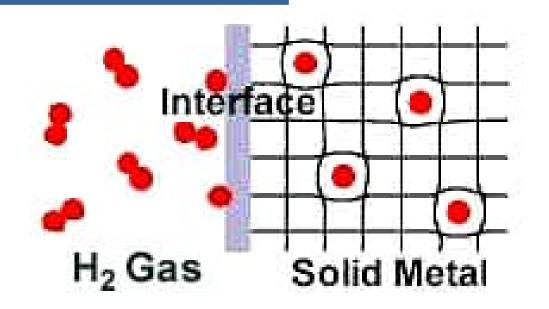
Group 1:	PRO:	 one s electron monovalent cation
	CONTRA:	 not a metal does not react with water
Group 17:	PRO:	 one electron to the full shell non-metal two-atom molecule
	CONTRA:	 anion not common relatively inert
Group 14:	PRO:	 half-filled electron shell electronegativity 2.2

HYDRIDES

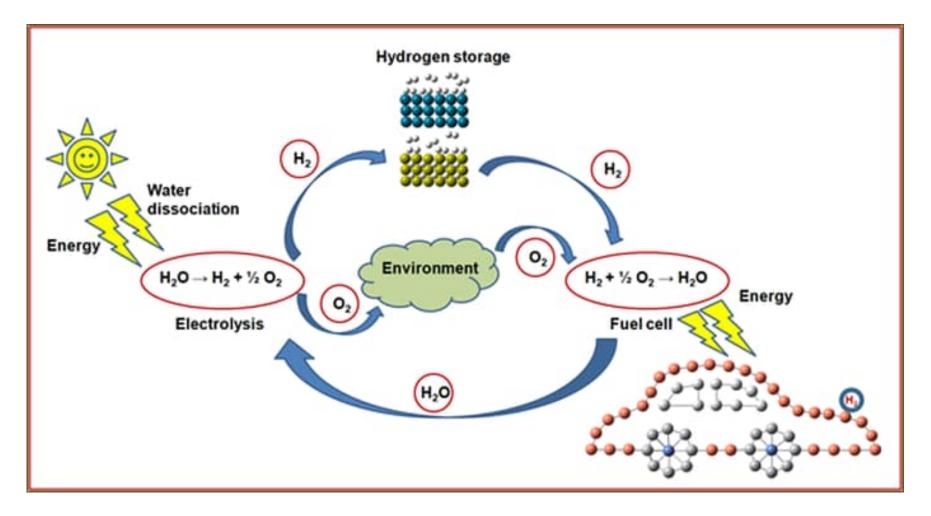

- Binary compounds of hydrogen
- Hydrogen forms hydrides with most of the elements
- Electronegativity of hydrogen only little higher than the average electronegativity of elements → many of the "hydrides" do not contain the H⁻ hydride ion
- Hydrides are categorized according to the type of bonding: ionic, covalent or metallic

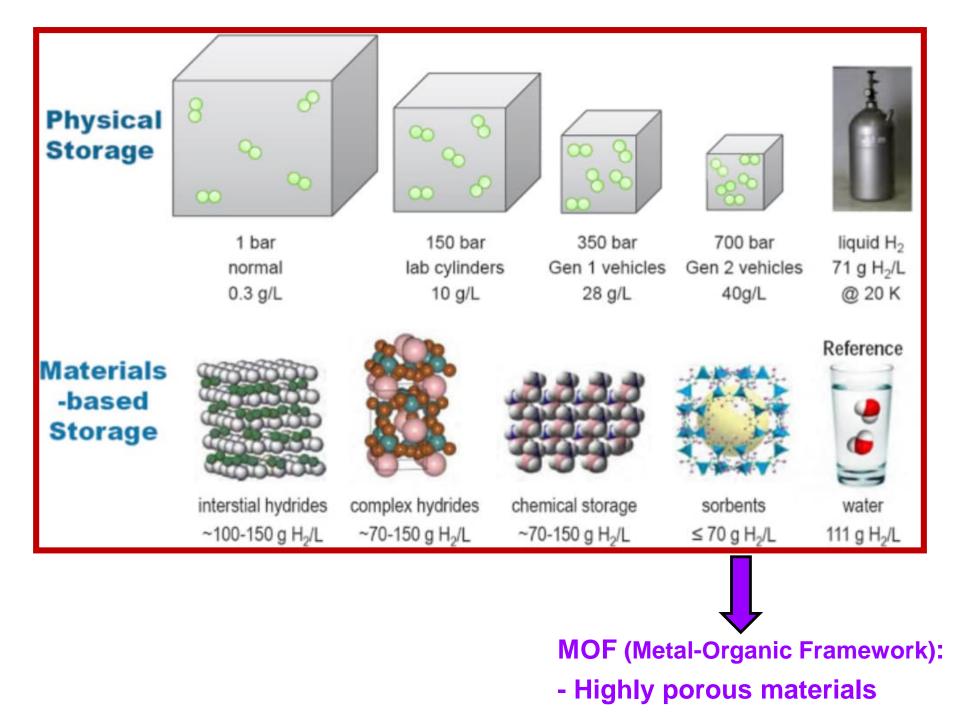
IONIC HYDRIDES

- with alkali and alkaline earth metals (except Be, Mg)
- metal cation and H⁻ ion
- crystal structures similar to those of halides (CI⁻ replaced by H⁻)
- very reactive, e.g.: LiH + $H_2O \rightarrow LiOH + H_2$ (used as reductants)


COVALENT HYDRIDES (not correct name for all these compounds)

- with all nonmetals (except noble gases) and the most electronegative metals (Sn,Ga)
- most of these hydrides are gaseous at room temperature




METALLIC (TRANSITION METAL) HYDRIDES

- solid materials
- hydrogen in interstitial positions
- often nontoichiometric, e.g. TiH_{1.9}
- volume increases upon hydrogen intercalation
 → no strong bonding (attraction)
- used for HYDROGEN STORAGE
 - Ti + H₂ + little heating/pressure \rightarrow TiH_{1.9}
 - TiH_{1.9} + higher temp. \rightarrow Ti + H₂

HYDROGEN STORAGE !!!

When going from metals to non-metals (from left to right in Periodic Table): A gradual change in acid-base character (seen for the OH compounds)

- In compounds with OH groups (E-O-H) electronegativity of the cation (E) defines whether the compound is an oxoacid or a base
- small electronegativity: $E-O-H \rightarrow E^+ + OH^-$ (base)
- large electronegativity: $E-O-H \rightarrow E-O^{-} + H^{+}$ (acid)
- For example: elements of the third period:

NaOHstrong base $Mg(OH)_2$ base $AI(OH)_3$ amfolyte $Si(OH)_4$ weak acid $[H_4SiO_4]$ $OP(OH)_3$ acid $[H_3PO_4]$ $O_2S(OH)_2$ strong acid $[H_2SO_4]$ $O_3CI(OH)$ strong acid $[HCIO_4]$

Electronegativity increases

ALKALI METALS

- Chemically highly coherent group, but lithium somewhat more different (diagonal relationship Li-Mg)
- Metal radius (Å): Li 1.52 (Mg 1.60), Na 1.86, K 2.27, Rb 2.48, Cs 2.65
- Ionic radius (Å):
 Li 0.76 (Mg 0.72), Na 1.02, K 1.38, Rb 1.52, Cs 1.67
- Charge/ionic radius: Li 1.40, Na 0.88, K 0.66, Rb 0.60, Cs 0.55
- Melting point (°C): Li 180, Na 98, K 64, Rb 39, Cs 29
- Oxidation product: Li₂O, Na₂O/Na₂O₂, K₂O₂, KO₂, RbO₂, CsO₂
- Li compounds more covalent than others
- Li compounds dissolve more easily into nonpolar solvents, and less into water
- Only Li forms the nitride, Li₃N (ref. Mg₃N₂)
- Li salts often contain water of crystallization, e.g. LiClO₄•3H₂O (ref. MgClO₄•6H₂O)

ALKALI VERSUS ALKALINE EARTH METALS

- Alkaline earth metals have larger Z_{eff} than alkali metals
 - \rightarrow smaller
 - \rightarrow denser
 - \rightarrow harder
- Alkaline earth metals have two valence electrons per atom
 - \rightarrow metal bonds stronger
 - \rightarrow better electrical conductivity
 - \rightarrow higher melting and boiling points

	Li/Be	Na/Mg	K/Ca	Rb/Sr	Cs/Ba
Electronegativity	1.0/1.5	0.9/1.2	0.8/1.0	0.8/1.0	0.7/0.9
Metal radius (Å)	1.52/1.12	1.86/1.60	2.27/1.97	2.48/2.15	2.65/2.22
Density (g/cm ³)	0.53/1.85	0.97/1.74	0.86/1.55	1.53/2.63	1.87/3.59
Melting point (°C)	181/1289	98/650	64/842	40/769	28/729
RT-resistivity (µohm cm)	9.47/3.70	4.89/4.48	7.39/3.42	13.1/13.4	

LITHIUM-ION BATTERY

- WHY Lithium: the lightest of all metals & the greatest electrochemical potential & the largest energy density per weight & small and easy/fast to move
- Charging: Li-ions from cathode to anode; Discharging: Li-ions from anode to cathode
- Commercialization: Sony 1991
- Used: portable electronics

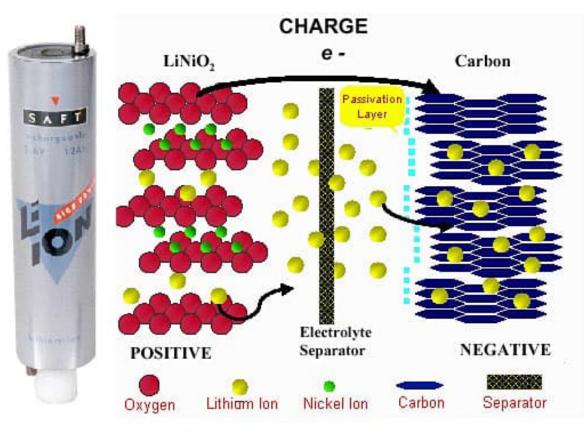
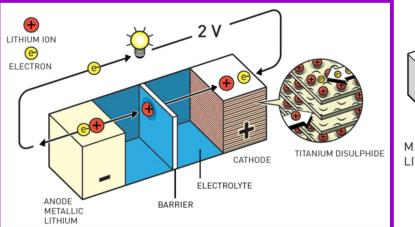
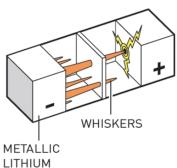
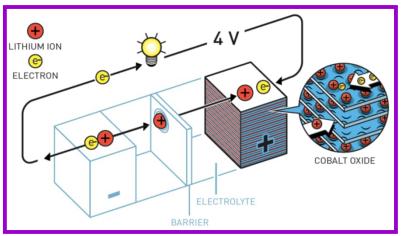




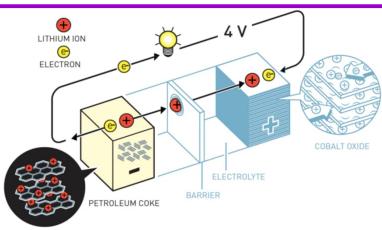
Photo Courtesy of SAFT America

Chemistry Nobel 2019

Stanley Whittingham (born 1941 UK):

- Exxon: TiS₂ cathode 1976


John Goodenough (born 1922 USA):


- Univ. Oxford: LiCoO₂ cathode 1980

Akira Yoshino (born 1948 Jpn):

- Asahi Kasei: carbon-based anode 1985

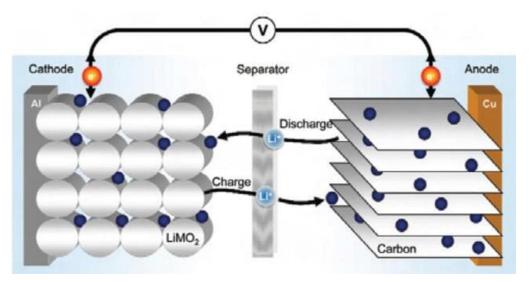
Commercialization: Sony 1991

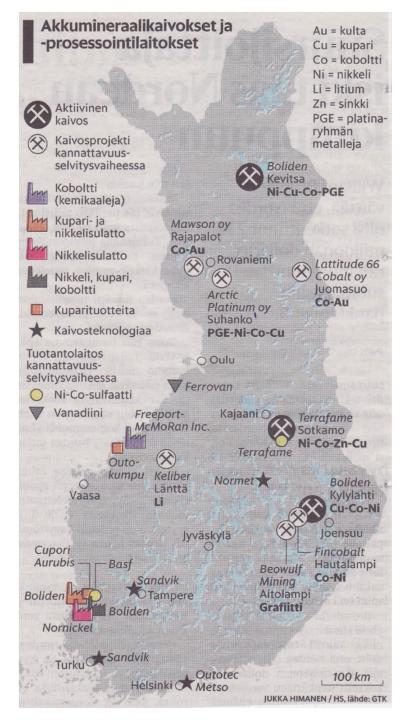
Current Li-ion battery materials / new alternatives

CATHODE:

ANODE:

ELECTROLYTE:

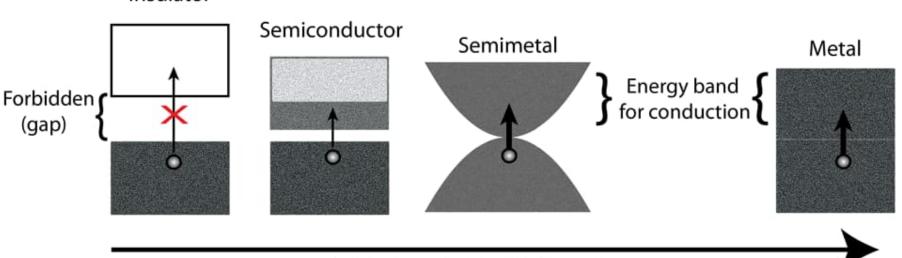

BINDERS:


 $LiCoO_{2}$ $Li(Co_{1/3}Mn_{1/3}Ni_{1/3})O_{2}, LiMn_{2}O_{4}, LiFePO_{4}$

Grafite Si, Li₄Ti₅O₁₂

LiPF₆ + ethylene carbonate solvent Solid electrolyte materials

PVDF (polyvinyldifluoride) + **NMP** (N-methylpyrrolidone) Water-soluble binders


												1						
1	1			Met	als	M	etallo	oids	N	onme	tals	1					3	18
Ĥ	2	-										•	13	14	15	16	17	He
3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		3	. 4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	,	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	t	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113	114	115	116	117	118
												_					_	
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

p-BLOCK

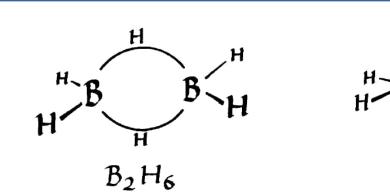
Metalloids

Insulator

- Element with properties intermediate between those of typical metals and nonmetals: boron, silicon, germanium, arsenic, antimony, tellurium & polonium
- Named metalloid (original meaning: metalloid = nonmetal) since 1950s
- In physics (when referring to the band structure): metalloid ≈ semimetal
- Semimetal should not be confused with semiconductor (or halfmetal)
- Typical properties of metalloids: brittle and somewhat shiny solids
- Important industrial materials (e.g. transistors, other semiconductor devices, ceramics, solar cells)

Increasing Electrical Conductivity

BORON GROUP: MELTING POINTS


2180 °C	660 °C	30 °C	157 °C	303 °C
Boron	Aluminum	Gallium	Indium	Thallium
Rhombohedral	ССР	Orthorhombic	Tetragonal	НСР

BORON: ELECTRON DEFICIENT COMPOUNDS

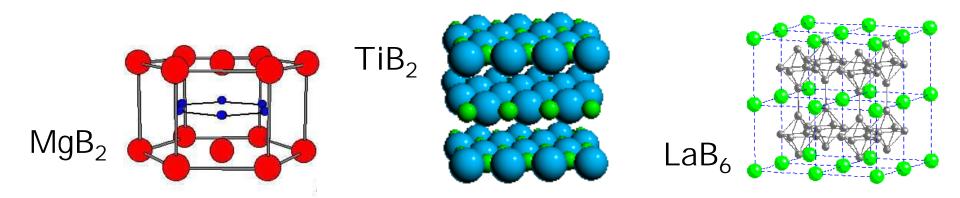
B: 1*s*²2*s*²2*p*¹

3 valence electrons \rightarrow octet not possible with covalent bonds electronegativity 2.0 \rightarrow ionic bonds not possible

- Difficult to achieve electron octet \rightarrow electron deficient compounds
- Normal single bond: 2 atoms and 2 bond electrons (2c-2e)
- Electron deficient compound: 3 atoms and 2 bond electrons (3c-2e)
- **Boranes** $B_n H_{n+4}$ or $B_n H_{n+6}$: typical electron deficient compounds
- Also AI, Ga, Be and Li form electron deficient compounds: (AIH₃)_n, AI₂(CH₃)₆, [Be(CH₃)₂]_n, [Li(CH₃)]₄

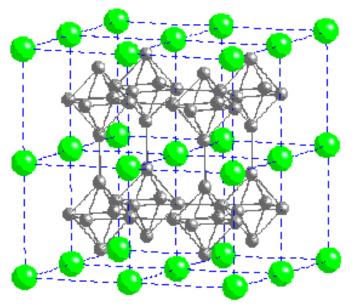
BORIDES

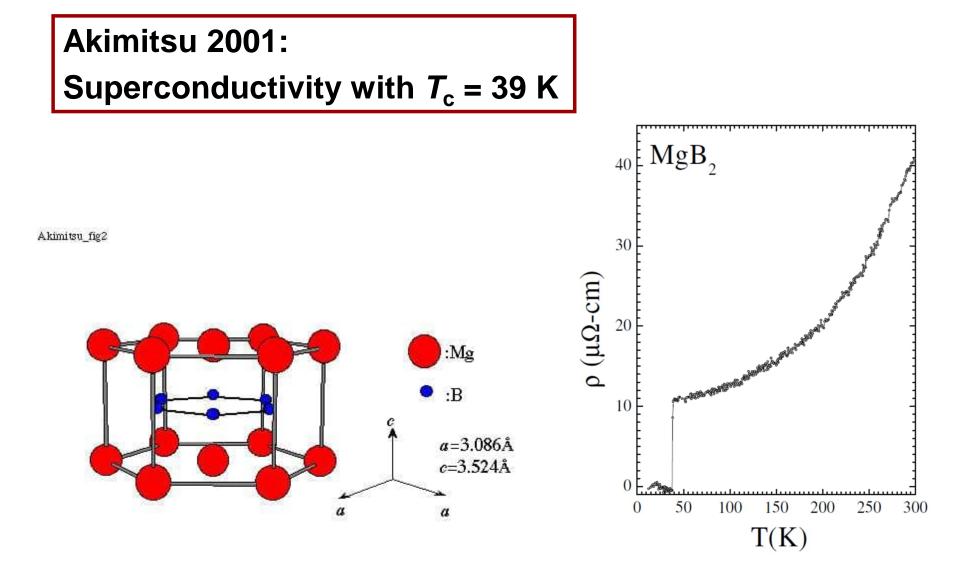
- Binary compounds of boron with metals
 - more than 200 different compounds
 - stoichiometry varies M₅B ... MB₆₆
 (e.g. M₂B, MB, MB₂, MB₄, MB₆)
 - M-rich typical for *d*-block transition metals, B-rich for main group metals, lanthanoids and actinoids
 - known are also nonstoichiometric and mixed borides
 - extremely hard, high-temperature resistive, chemically inert
 - uses: coatings, electrodes, nuclear technology (protection, neutron counter: ${}^{1}n + {}^{10}B \rightarrow {}^{7}Li + {}^{4}He$)
- Boron carbide
 - " B_4C " = $B_{12}C_3$
 - one of the hardest materials
 - uses: armor material, bycycles



BORIDE STRUCTURES

- M-rich: (1) separate B atoms
 - (2) separate B_2 atom pairs
 - (3) B_n chains
 - (4) double chains
 - (5) planes (MB₂)


(catenation tendency of B atoms increases with increasing B content)


- B-rich:
- (1) planes
- (2) 3D nets
- (3) clusters (e.g. B₆ octahedra and B₁₂ icosahedra)

BONDING in BORIDES

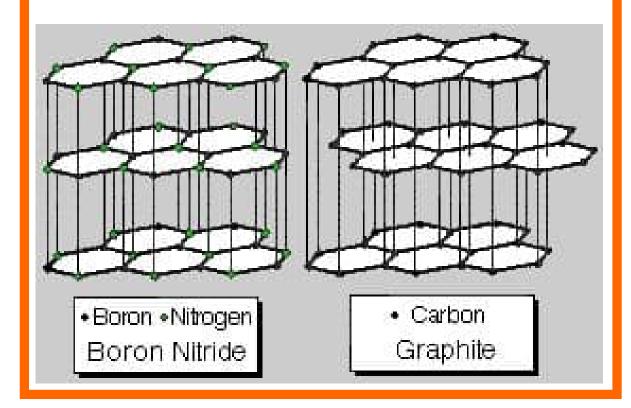
- The simple ionic / covalent / metal bond concepts fail
- LaB₆: in B₆ clusters electron-deficient (multicenter-2e) bonds
 - between clusters covalent (2c-2e) B-B bonds
 - move of two electrons from La to B₆ cluster
 - \rightarrow La²⁺-B₆²⁻ ionic bond
 - third valence electron of La is delocalized (metal bond)
 - \rightarrow good electrical conductivity, good electron emission
 - \rightarrow use: electron guns in electron microscopes

BORON-NEUTRON-CAPTURE-THERAPY (BNCT)

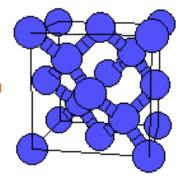
- Treatment of inoperable brain tumors/cancer
- Boron (¹⁰B) absorbs efficiently neutrons (large absorption cross section)
 → radioactive ¹¹B:a
- Radioactive radiation destroys tumor cells
- Challenge: to deliver high concentrations of a boron compound specifically to tumor cells
- Some boron compounds such as (B₁₂H₁₁SH)²⁻ ion based ones have a tendency to accumulate in cancer cells

$$^{10}B + {}^{1}n \rightarrow {}^{11}B \rightarrow {}^{7}Li + {}^{4}He$$

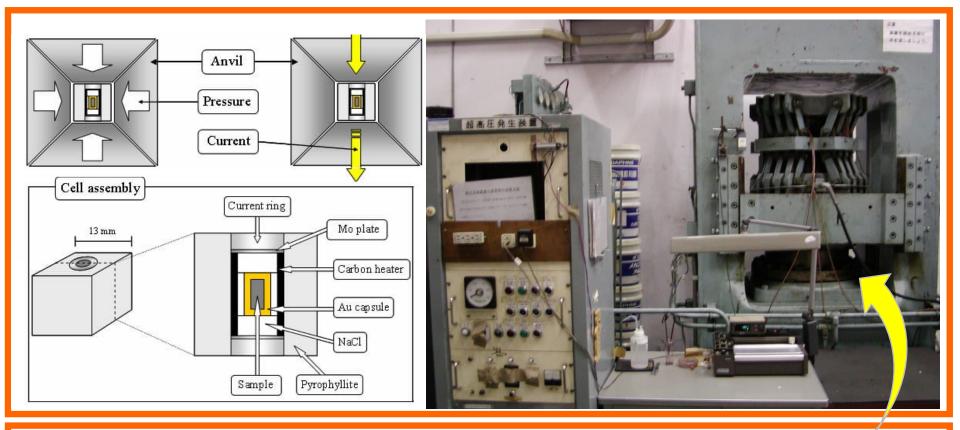
Isotope	Hydrogen-1	Boron-10	Carbon-12	Nitrogen-14	Oxygen-16
Neutron-abs. cross-section (barn)	0.33	3.8 x 10 ³	3.4 x 10 ⁻³	1.8	1.8 x 10 ⁻⁴


 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

ISOELECTRONIC: C-C and B-N

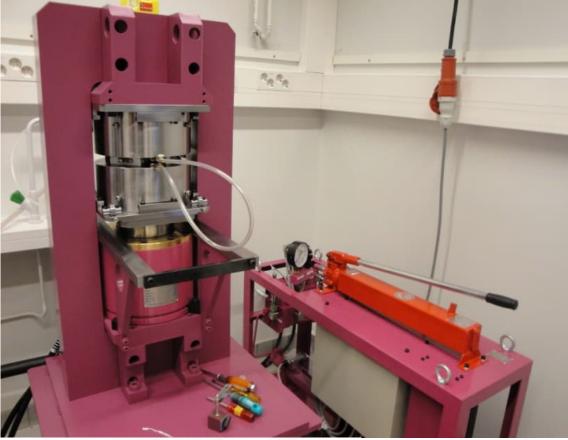

- Boron has one valence electron less and nitrogen one valence electron more than carbon → Boron nitride BN has in average the same number of valence electrons per atom as carbon → C ja BN isoelectronic → resemble each other
- BN forms similar assemblies as those in different carbon allotropes: graphite, diamond, fullerenes, nanotubes and graphene

GRAPHITE STRUCTURE: C and BN


- C: the fourth valence electron loosely bound → good electrical conductivity → black
- BN: Polar bond between the layers → no electrical conductivity → white

DIAMOND

- Diamond and graphite known for thousands of years
- The fact that they are different forms of the same element was understood much later
- The critical conbustion experiments were made in the end of 18th century: diamond and graphite produce the same amount of CO₂ (per same mass)
- In nature diamonds have been formed slowly from graphite under highpressure high-temperature conditions
- The first synthetic diamonds were made in 1953 in Sweden under 7 GPa (= 70 000 atm) and at high temperature using molten Ni as a catalyst (nowadays most of the diamonds are man-made)
- In diamond the C atoms are packed much denser (3.5 g/cm³) compared to the graphite (2.3 g/cm³); this is the reason why the high-pressure conditions promotes the formation of diamonds
 - For high-tech applications diamond thin films are needed; these are synthesized using hydrocarbons as precursors (methanol, ethanol) (Note: the same tetrahedral *sp*³ hybridization as in diamond)

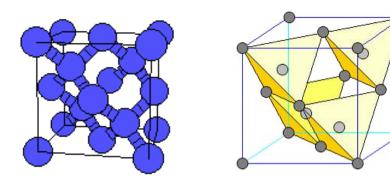

HIGH-PRESSURE SYNTHESIS

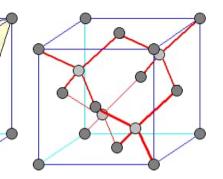
HP equipment

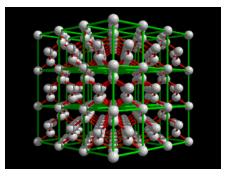
at Tokyo Tech

- 5 GPa = 50 000 atm
- 400 1200 °C
- 10 120 min
- 50 100 mg

H. Yamauchi & M. Karppinen, Supercond. Sci. Technol. 13, R33 (2000).

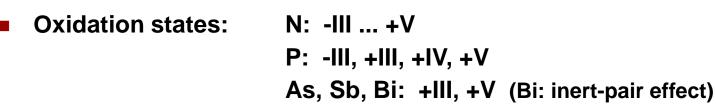



HP equipment at Aalto

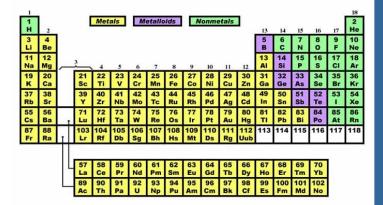

4 GPa & 25 GPa

DIAMOND STRUCTURE: C and BN

- Each C atom (or B and N atom) bonded with strong covalent bonds to tetrahedrally surrounding neighbours
- In the 3D atom lattice each C-C bond is equally long (1.54 Å) and strong
- All four valence electrons of carbon are bound in the four bonds
 → pure diamond is one of the best known electrical insulators
- Strong covalent bonds \rightarrow diamond is the strongest material known
- Diamond-type BN is the second strongest material (ca. 50 % of the harness of diamond)
- Strong bonds \rightarrow high melting point (4100 °C)



DIAMOND AS THERMAL CONDUCTOR & SEMICONDUCTOR


- Diamond is the best thermal conductor among the known materials (ca. 5-times better than the best metals)
- In diamond thermal conduction happens via phonons (vibrations of C atoms) [in metals heat (like electricity) transport occurs via moving valence electrons]
- C atoms are light and the C-C bond is strong
 - → efficient heat conduction (impurities and lattice imperfections depress thermal conductivity)
- BN ≈ "impure C"
 - \rightarrow diamond-type BN is not as good thermal conductor as diamond
- Pure diamond is electrical insulator (used as heatsink for semiconductor laser diodes)
- B-doping of diamond → p-type semiconductor
- Diamond-type BN:
 - slight B excess \rightarrow p-type semiconductor
 - slight N excess \rightarrow n-type semiconductor

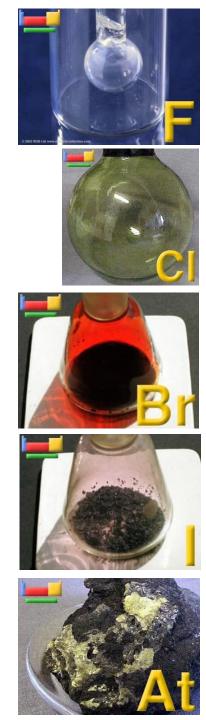
METALLIC CHARACTER and BASICITY OF OXIDE: N < P < As < Sb < Bi

- N, P nonmetals, As, Sb semimetals, Bi metal
- However: resistivity increases As < Sb < Bi</p>
- N (g), P (s; mp. 44 °C), As (s), Sb (s), Bi (s)
- N_2 gas (:N = N:) but C solid (4 x C-C)
- Melting points (°C):
 N -210, P 44, As subl. 615, Sb 631, Bi 271
 For metals/nonmetals m.p. decreases/increases in a group from up to down

- Acid-base nature of oxide reflects the (non)metal character of the element
 - N oxides (+I ... +V), P_2O_3 and P_2O_5 acidic
 - As₂O₃, As₂O₅ and Sb₂O₃ amfoteric
 - Bi₂O₃ basic

MULTITUDE OF SULPHUR COMPOUNDS

- Several stable oxidation states
- Allotropy of S: tens of allotropes (ref. O 2, Se 6, Te 3, Po 2)
- Various S-chains and S-rings, where other atoms can bond
- Most common: S₈-ring "crowne" (different polymorfs)
- Polycations S_n²⁺ (n=4 yellow, n=8 blue, n=19 red)
- Polysulfides S_n²⁻ (n=2-6; strongly colourful)
- Thio-compounds
- Sulphur is also one of the basic elements in organic compounds



HALOGENS

Chemically very homogeneous group, except fluorine which differs from the rest of the group members in many ways

Element	Melting Point (°C)	Boiling Point (°C)
F ₂	-219	-188
CI ₂	-101	-34
Br ₂	-7	+60
۱ ₂	+114	+185
As .(rad. act)	+320	+337

FLUORINE VERSUS OTHER HALOGENS

- Atomic radius (Å): F 0.71, CI 0.99, Br 1.14, I 1.33
- F₂: small F atoms with many outer electrons → large electron-electron repulsion → small bond energy → Fluorine is HIGHLY REACTIVE
- Electronegativity: **F** 4.0, Cl 3.0, Br 2.8, I 2.5, At 2.2

Oxidation states: F: -I
 CI: -I, +I, (+II), +III, (+IV), +V, (+VI), +VIII
 Br: -I, +I, +III, (+IV), +V, (+VI), +VIII
 I: -I, +I, +III, +V, +VIII

Preparation of fluorine (from fuorite CaF₂) **Moissan 1886** (Nobel 1906):

- $-2HF \rightarrow H_2 + F_2$
- problem: F₂ and HF gases highly reactive and poisonous
- electrolysis in KF melt, Pt cell, Pt-Ir electrodes, -50 °C

- HOWEVER: sometimes metals exist in their highest oxidation states in oxides rather than in fluorides, e.g. OsO_4 possible, but not OsF_8

- Reason: 8 F⁻ ions around the small Os⁸⁺ cation not possible !

Antozonite (Stink Spar)

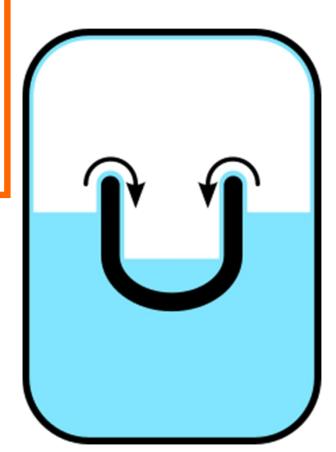
- The CaF₂ mineral "Stink Spar" in Wölsendorf contains minute amounts of radioactive uranium inclusions
- Uranium constantly emits ionizing radiation which splits CaF₂ into calcium and elemental fluorine
- The thus formed fluorine remains in tiny inclusions
- It however slowly reacts with atmospheric oxygen and water vapour, producing ozone
- The characteristic smell of ozone gave the name for the mineral

x 128 440 430 420 410 5 /pm 16 16 450 400 350 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 6 /ppm

2012: First proof of F₂ on Earth by ¹⁹F-MAS-NMR

J. Schmedt auf der Günne, M. Mangstl & F. Kraus, Angew. Chem. Int. Ed. 51, 7847 (2012).

NOBLE GASES: BASIC PROPERTIES


- Helium has the lowest known boiling point (-269 °C)
- Ionization energies (kJ/mol): He 2269, Ne 2079, Ar 1519, Kr 1349, Xe 1169, Rn 1036

COMPOUNDS

- Bartlett 1962: $O_2(g) + PtF_6(g) \rightarrow [O_2^+][PtF_6^-](s)$
- Ionization energy of O₂ 1180 kJ/mol ≈ IE(Xe) → "[Xe][PtF₆]" → Ar, Kr, Xe form compounds with the most electronegative elements
- Oxidation states: +II, +IV, +VI, +VIII
- Bond strengths (kJ/mol): Xe-F 130, Xe-O 84, Kr-F 50
- KMXeNaO₆ double perovskite !
 [S.N. Britvin et al., Angew. Chem. 127, 1 (2015)]

SUPERFLUIDS

- Under normal pressure He stays in liquid state down to 0 K
- ³He and ⁴He superfluids at low temperatures
- Viscosity zero → continuous movement → escape from the container
- Laws of classical mechanics do not work → quantum mechanics
- Ultrahigh thermal conductivity

