LECTURE SCHEDULE

Mon (Ke3) 12.15 - 14.00 Wed (Ke2) 10.15 - 12.00 Fri (Ke5) 10.15 - 12.00

Date Topic

- 1. Wed 06.09. Course Introduction & Short Review on Elements & Periodic Table
- 2. Fri 08.09. Short Survey of Main Group Elements
- 3. Mon 11.09. Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)
- 4. Wed 13.09. Transition Metals: General Aspects & Pigments
- 5. Fri 15.09. Redox Chemistry (Ke4)
- 6. Mon 18.09. Crystal Field Theory
- 7. Wed 20.09. V, Nb, Ta & Perovskites & Metal Complexes & MOFs & MLD
- 8. Mon 25.09. Cr, Mo, W & 2D materials & Mxenes & Layer-Engineering
- 9. Wed 27.09. Mn, Fe, Co, Ni, Cu
- 10. Fri 29.09. Cu & Magnetism & Superconductivity
- 11. Mon 02.10. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
- 12. Wed 04.10. Lanthanoids + Actinoids & Luminescence

Fri 06.10.

- 13. Wed 11.10. Resources of Elements & Rare/Critical Elements & Element Substitutions
- 14. Fri 13.10. Inorganic Materials Chemistry Research

EXAM: Tuesday Oct. 17, 9:00-12:00 in Ke2

PRESENTATION TOPICS/SCHEDULE

Mon	25.09.	Mo:	
Wed	27.09.	Mn: Ru:	Naomi Lyle & Sanni Ilmaranta Miklos Nemeszeghy & Timo de Jonge
Fri	29.09.	Cu:	Koshila Hiruni & Kaushalya Poonanoo
Wed	04.10.	Eu: Nd: U:	Binglu Wang & Maryam Jafarishiad & Saara Siekkinen Patrich Wiesenfeldt & Tomoki Nakayama Miikka Viirto & Ashish Singh
Wed	11.10.	Co: In: Te:	Gabrielle Laurent & Yan Zheng Sonja Alasaukko-oja & Katri Haapalinna Sofia Rantala & Roger Peltonen

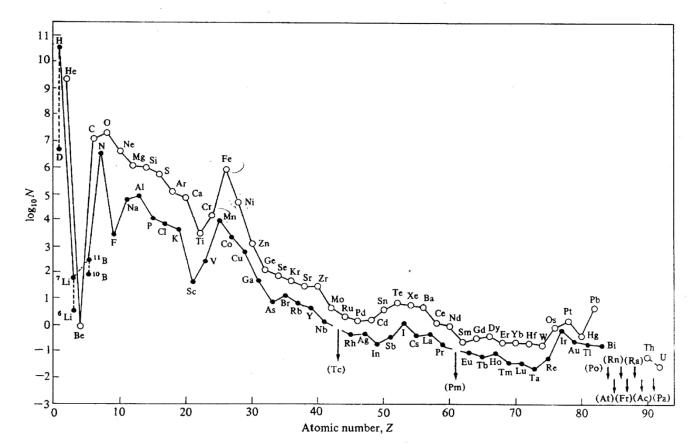
QUESTIONS: Lecture 3

- Among the following four elements, Zn, Ti, Zr, and Hf, only one forms compounds at +III
 oxidation state. Just by looking at the Periodic Table, predict which element this is. Most
 importantly, explain why you predicted so.
- 2. Hf is mostly found in nature in trace amounts in Zr minerals. Why it is so easy for Hf to replace some of the Zr in these minerals?
- 3. Which element is commonly used as a substituent to create oxygen vacancies in ZrO₂? Explain why?
- 4. Why in ALD technique:
 - (a) Film thickness control is straightforward?
 - (b) Conformal coating is readily achieved?

Group ‡Perio		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Zn	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰
Ti	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ²
Zr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ²
Hf	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ²

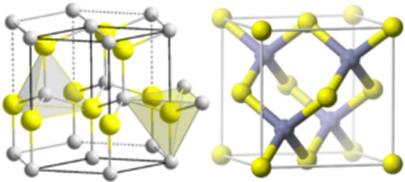
No partly-filled d or f orbitals


IONIC RADII (in Å): Depending on Coordination Number

		Ti	Zr	Hf	Zn
+2	CN-4 CN-5	-	:	:	0.60 0.68
	CN-6 CN-8	0.86 -	:	:	0.74 0.90
+3	CN-4 CN-5 CN-6	- - 0.67	-	-	- -
+4	CN-4 CN-5 CN-6 CN-8	0.42 0.51 0.61 0.74	0.73 - 0.86 0.98	0.72 - 0.85 0.97	- - -

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

OCCURRENCE of the METALS: Zn, Ti, Zr, Hf


- Zn (d¹⁰, not transition metal) is the fourth most common metal in use (after Fe, Al and Cu) with an annual production of ca. 13 million tonns
- Ti: widely distributed, many minerals (most common rutile and ilmenite)
- Zr: found in more than 40 minerals
- Hf: quite rare, no own minerals, traces in Zr minerals: Hf/Zr ≈ 2 %

ZnO

- 4-coordination in hexagonal wurtzite & cubic zinc blende (diamond like) structures
- Additive in various applications: rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, first-aid tapes, etc.
- Wide-bandgap II-VI semiconductor
- Native doping due to small excess of zinc/hydrogen → n-type doping
- Al³⁺-for-Zn²⁺ doping for enhanced n-type doping
- Problem for some applications): p-type doping has not been achieved
- Attractive properties for optoelectronics: wide bandgap, high transparency, tunable electrical properties, high electron mobility → transparent electrodes, liquid crystal displays, energy-saving windows, electronics as thin-film transistors and light-emitting diodes → THIN FILMS

Zinc in Biology (protein functions)

- Essential for humans, animals and plants
- Crucial for the catalytic functions in enzymes
- Stabilizes the folding of protein subdomains
- Why Zinc ?
 - widely available in environment (important for evolution)
 - fixed oxidation state (+II): completely resistant to redox changes and thus not affected by redox potentials in the organisms
 - prefers tetrahedral coordination (unlike many other metals): tetrahedral coordination of the metal site seems to be a key feature in most zinc enzymes
 - d¹⁰ configuration and no crystal field effect (to be discussed next week): flexible for adjustment of nearest-neighbour surroundings

TITANIUM: Use as a metal / in metal alloys

- <u>Corrosion resistance</u>: pulp and marine industry, chemical processing, and energy production/storage applications
- High specific strength (strength/weight ratio): automotive industry, aerospace applications, sports equipment, jewelry, eyeglass frames
- Inertness in human body: surgery/artificial implants
- DISADVANTAGE: cost (Ti 6 times more expensive than AI)

PRODUCTION OF TITANIUM

- Oxide minerals: rutile (TiO₂) or ilmenite (FeO-TiO₂; 97-98 % TiO₂)
- Oxides are transformed to TiCl₄ which is a liquid and can be distilled for purification, e.g. by chloride process:
 - $TiO_2 + 2CI_2 + 2C (800 °C) \rightarrow TiCI_4 + 2CO$
 - $2\text{TiFeO}_3 + 7\text{Cl}_2 + 6\text{C} (900^{\circ}\text{C}) \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$
- TiCl₄ is reduced in argon with molten Mg (Kroll process)
 - TiCl₄ + 2Mg (1100 °C) \rightarrow Ti + 2MgCl₂
- MgCl₂ is reduced back to Mg such that it can be recycled
- Product: Titanium sponge (porous)

Zr & Hf

- Exactly the same size (due to shielding effect/lanthanide contraction)
- Of all the 4d-5d transition metal pairs, Zr and Hf are the most similar
- Separation of Hf from Zr very difficult
- Hf was discovered as late as 1922 (Zr more than 100 years earlier)
- Hf was the first element which was searched for and found based on the quantum theory (lat. Hafnia = Copenhagen)
- Differencies: density (atomic weight ratio Zr:Hf = 1.0:2.0)
 - neutron absorption (Hf 600-times stronger): different (opposite) uses in nuclear power plants

SEPARATION of Zr and Hf

- Zr: very low neutron absorption → used to make containers for nuclear fuel
- Hf: very high neutron absorption → used in control rods
- For the use of Zr in nuclear fuel containers it is crucial to ensure that the Zr metal used has extremely low Hf content

TiO₂ (important chemical, produced worldwide)

Crystal structures: - rutile, anatase, brokite (6-coord.)

White pigment: - large refractive index

 used in paints, paper, plastics, cosmetics, foods, tooth pastes, ...

UV protection: - sunscreens, plastics

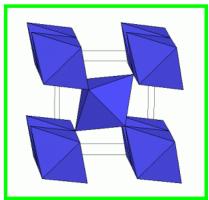
Inert/non-poisonous: - filler material in pharmaceuticals

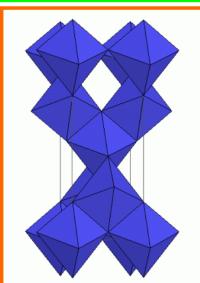
Photocatalytic: - Akira Fujishima 1970s

- water splitting

Antibacterial: - decomposition of organics with UV light

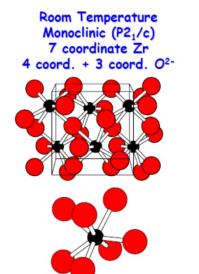
- 3-times stronger compared to chlorine,

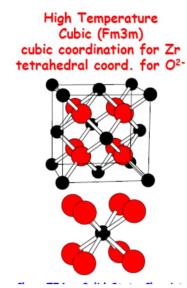

1.5-times stronger compared to ozone

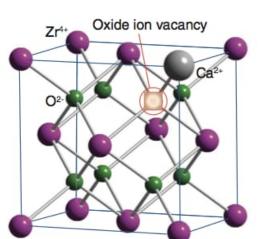

Superhydrophilic: - Akira Fujishima 1996

- after UV radiation

water spreads (no droplets) on TiO₂

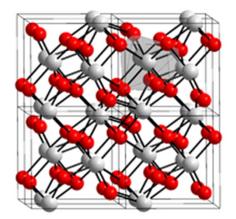

- e.g. sauna mirrors



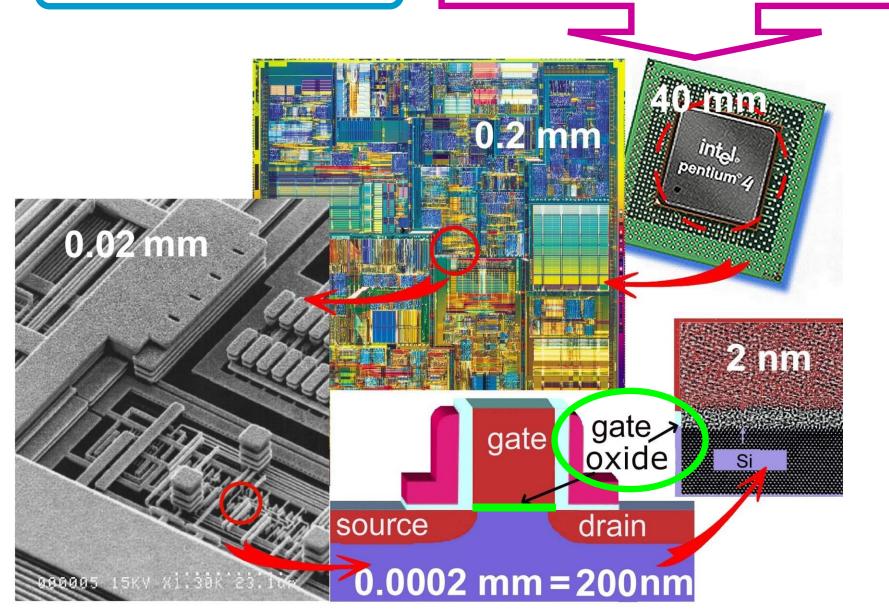


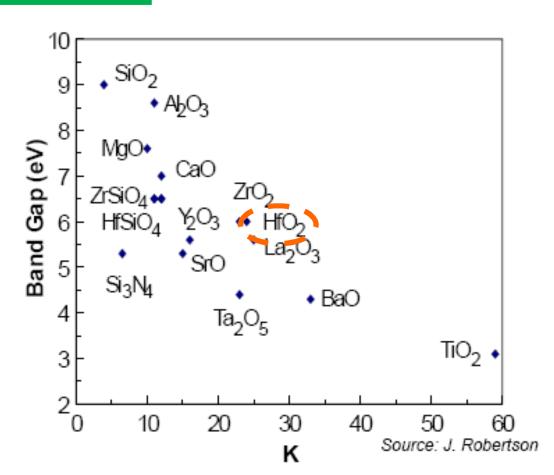
ZrO₂

- Used as industrial ceramics, protective coating (e.g. on TiO₂ pigment particles) and refractory material in e.g. insulation
- Monoclinic (7-coord.) structure at RT & cubic (8-coord.) structure at high temperatures
- Y^{III}-for-Zr^{IV} substitution stabilizes the cubic ZrO₂ structure
- Yttrium-stabilized zirconia (YSZ) for oxygen sensors and fuel cells owing to its low electronic conductivity but high oxide ion conductivity (Y³+→ Zr⁴+ → oxygen vacancies)
- Synthesized in various colours (gemstone & diamond simulant)

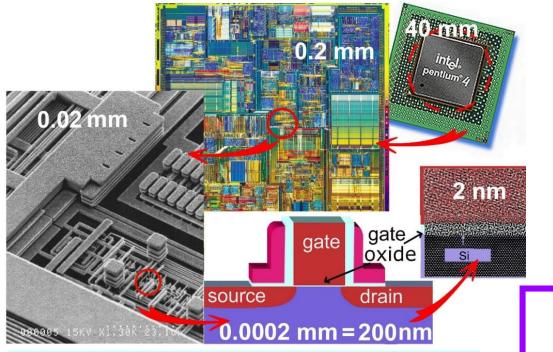


HfO₂


- Similar monoclinic (7-coord.) crystal structure to that of ZrO₂
- Very high melting point → refractory material for insulation (e.g. in thermocouples)
 → operates up to 2500 °C
- Multilayered HfO₂ coatings reflect sunlight & block heat conduction
 - → passive cooling of buildings
 - → several degrees cooler than surrounding materials
- HfO₂ high-κ dielectrics → dielectric constant 5 times higher compared to SiO₂ → high-κ material in DRAM (dynamic random access memory) and CMOS (complementary metal-oxide semiconductor) microelectronics devices
- Intel 2007 → replacement of SiO₂ as gate insulator in FETs (field-effect transistor)
 → deposition of high-quality amorphous THIN FILMS using ALD
- Partial substitution of Hf by Si (or Al) increases the crystallization temperature


CMOS transistor

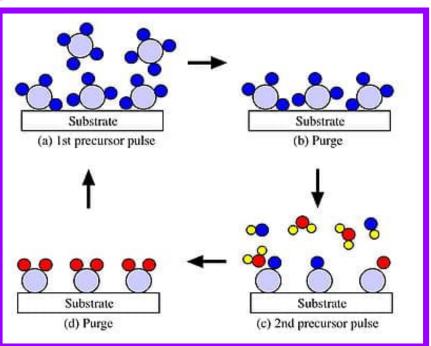
smaller transistors \rightarrow lower gate voltage same electric fields \rightarrow thinner dielectric $SiO_2 \rightarrow HIGH-k$ DIELECTRICS



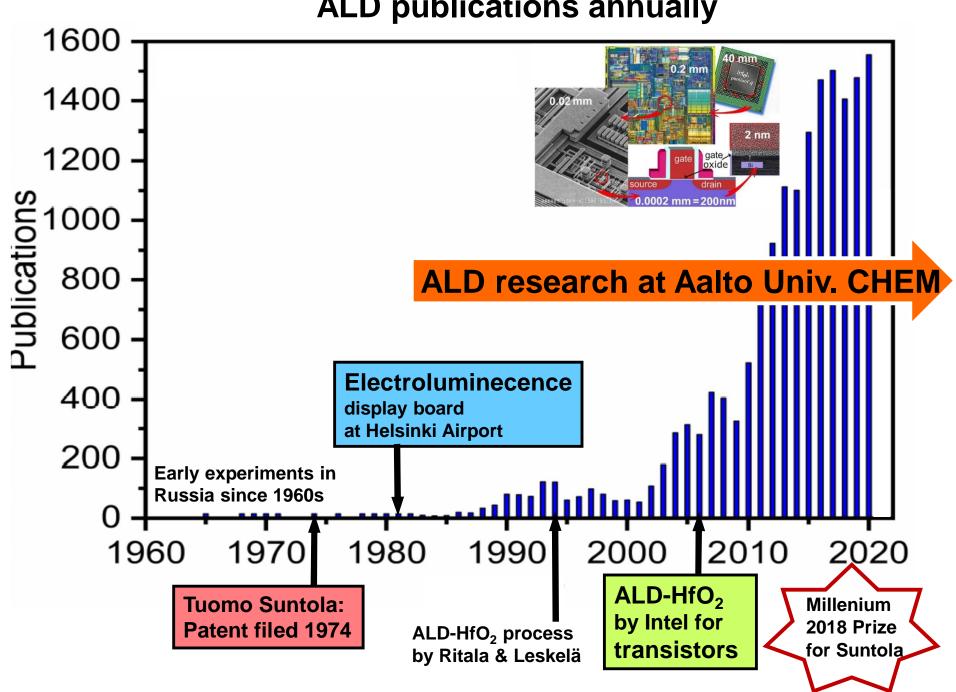
Conditions for high-k dielectrics

- High enough dielectric constant k
- Wide band gap for low leakage
- Stable no reaction with Si
- Good interface, low impurities

Atomic Layer Deposition (ALD) Technology

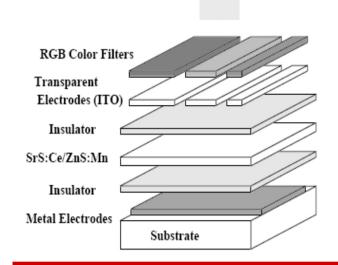


- High-quality (pinhole-free)
- Thickness control (atomic level)
- Large-area homogeneity
- Conformity → Nanostructuring


ALD: HfCl₄+H₂O

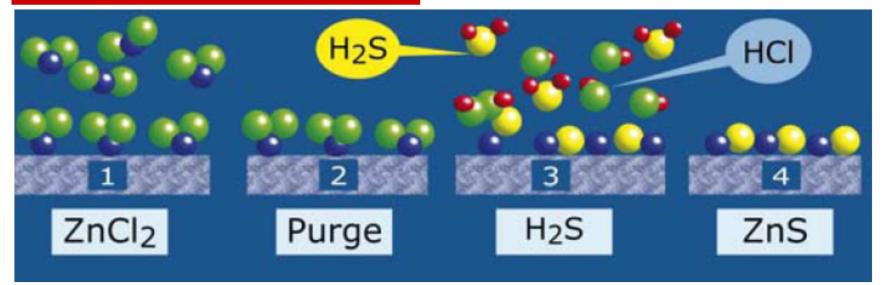
CMOS transistor

 2-nm amorphous HfO₂ gate-oxide layer deposited by ALD



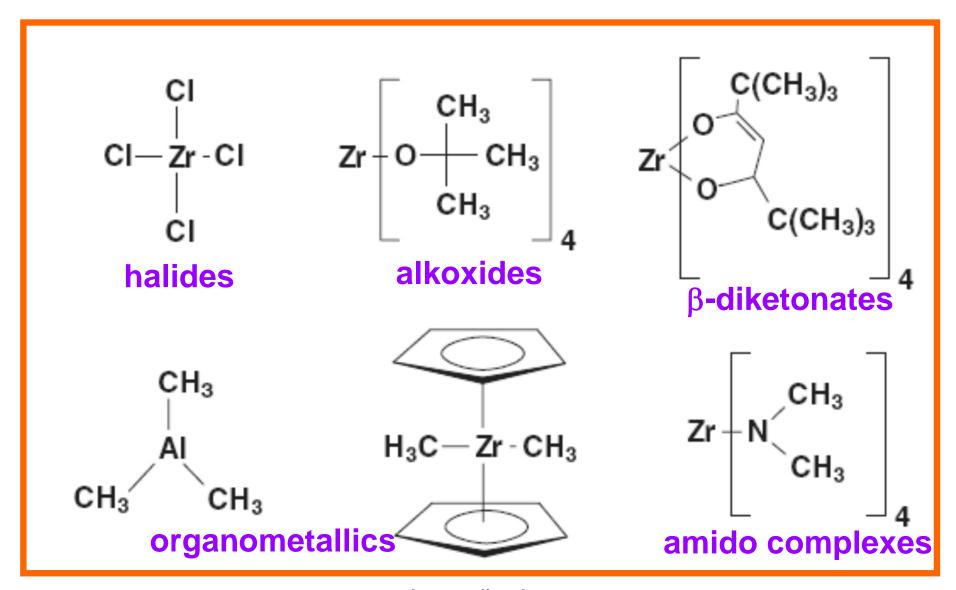
ALD publications annually

Atomic Layer Deposition (ALD) Thin-Film Technique


- Gaseous precursors & Self-limiting surface reactions
- Precisely thickness-controlled, Large-area homogeneous & Conformal thin films

Electroluminescent display

Instrumentarium/Finlux/Planar

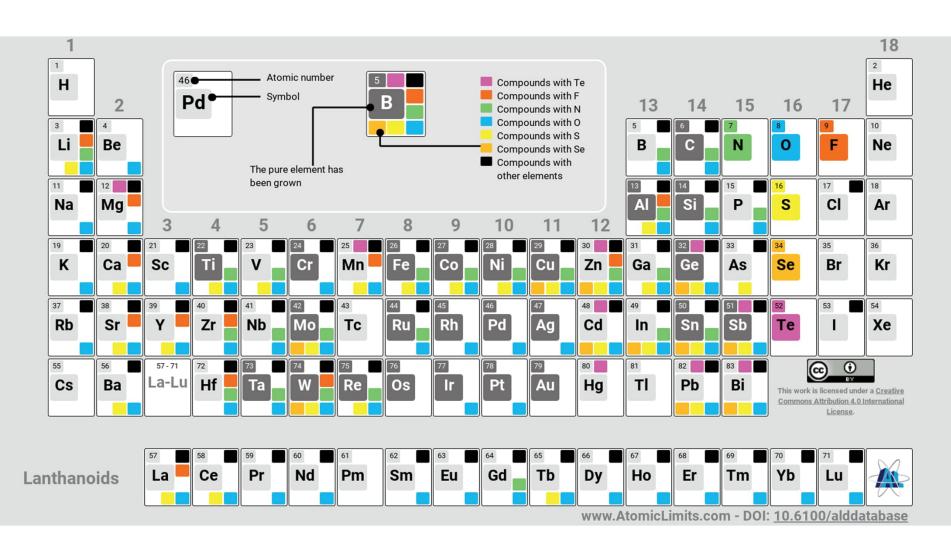


OXIDES (Al₂O₃, ZnO, TiO₂, ZrO₂ & HfO₂) & ALD (atomic layer deposition) thin-film technology

EXAMPLES of APPLICATIONS

- ALD-HfO₂ (amorphous): high-k dielectrics
- ALD-ZrO₂ (amorphous): barrier coating
- ALD-TiO₂ (crystalline): photovoltaics
- ALD-ZnO (crystalline): thermoelectric material

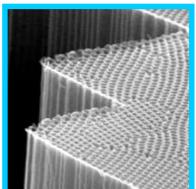
COMMON PRECURSORS in ALD

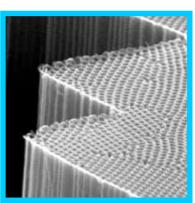


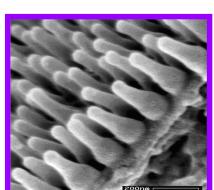
e.g. cyclopentadienyls

Common CO-REACTANTS (second precursor):

- Water H₂○ (e.g. with TiCl₄ or Zn(CH₂CH₃)₂) → ○xides
- Ozone O_3 (e.g. with metal β -diketonates) \rightarrow Oxides
- Dihydrogensulfide H₂S (e.g. with ZnCl₂) → Sulfides
- Ammonia NH₃ → Nitrides


Periodic Table of ALD Processes



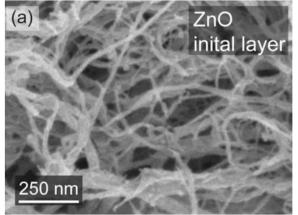

Advantages of ALD

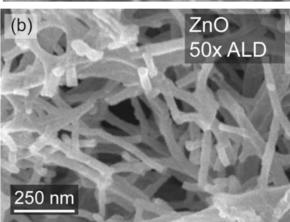
- Relatively inexpensive method
- **Excellent repeatability**
- Dense and pinhole-free films
- Accurate and simple thickness control
- Large area uniformity

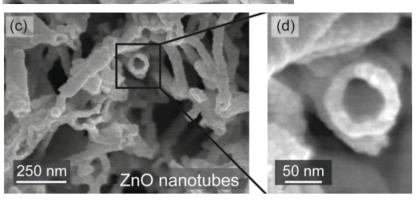
- Low deposition temperature
- **Gentle deposition process**
- **Organic/polymer films**
- Inorganic/organic hybrid materials . O

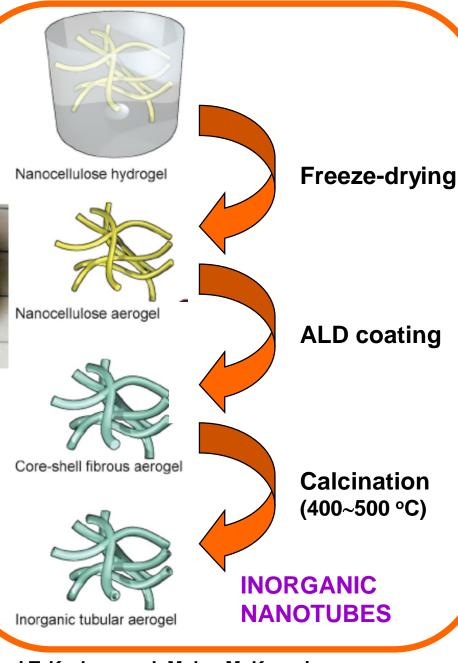
Kalevala Koru (Finland):

traditional silver jewelry

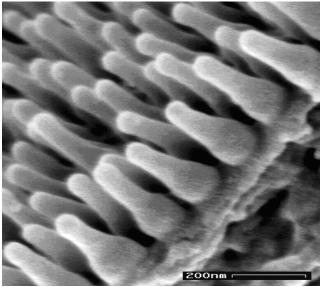





Dense, pinhole-free & highly conformal ALD-Al₂O₃-nanocoating efficiently protects silver jewelries from tarnishing

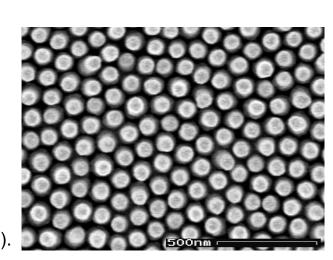

NANOSTRUCTURING by ALD

- nanocellulose aerogel template

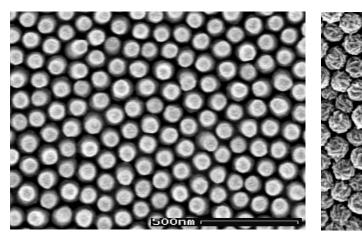


J.T. Korhonen, J. Malm, M. Karppinen, O. Ikkala & R.H.A. Ras, *ACS Nano* 5, 1967 (2011).

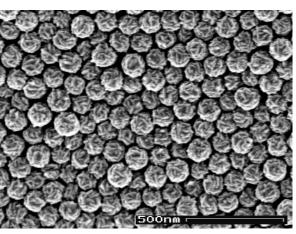
CICADA WING

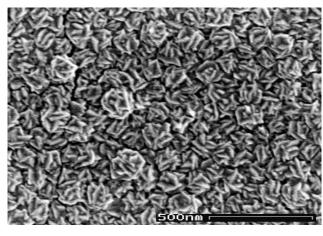

- Peculiar surfacenanostructure
 200-nm high nanopillars coated with a waxy layer
- superhydrofobic

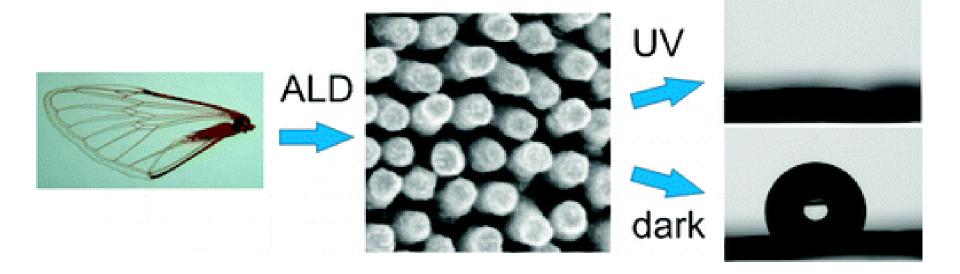
ZnO

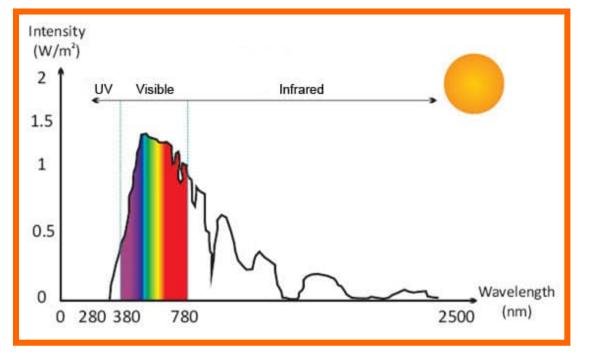

Reversible change from hydrofobic to hydrophilic upon UV-radiation

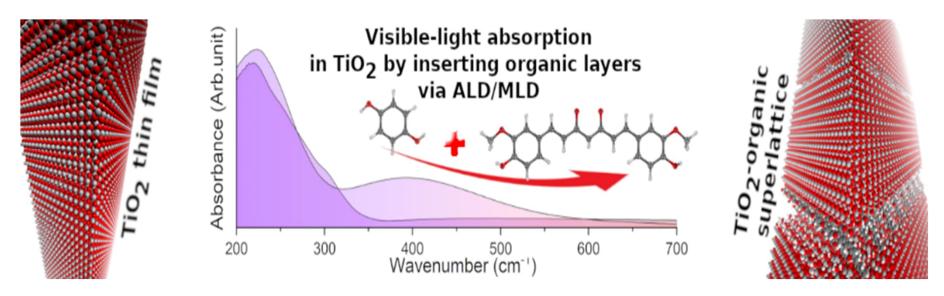
CICADA WING + ZnO


- Conformal coating of the wing by a thin layer of ZnO (~20 nm) by means of ALD
- Reversible change from superhydrofobic to superhydrophilic upon UV-radiation


J. Malm, E. Sahramo, M. Karppinen & R. Ras, Chem. Mater. 22, 3349 (2010).






300 cycles (60 nm)

500 cycles (100 nm)

Visible-light absorbing TiO₂:curcumin thin films with ALD/MLD, A. Philip, R. Ghiyasi & M. Karppinen, *ChemNanoMat* 7, 253 (2021).