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Vectors

L1
L2

LN

Vector transpose and Hermitian transpose:

x! = 1, x9,...,TN]

xH = (XT)* = 27,25, ..., 2]
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Vector Euclidean norm:

N )

2

x|l =9 > lail
i=1 )

The scalar (inner) product of two complex vectors:

N
allb = Zajfbi
1=1

Cauchy-Schwarz inequality

1/2

|
A

X

H
a”"b| < [la| - ||bl]
Orthogonal vectors:

allb =bfa=0
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Example: consider the output of an LTI system (filter)

E:h — h'x(n)

where
- h(0) _ x(n)
h=| " =] T
CA(N-1) w(n— N +1)
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The set of vectors x1,X9, ..., Xy, is said to be linearly independent it
a1X1 + a9xg + -+ apxy, =0 ()

implies that «; = 0 for all 2. If any set of nonzero «; can be found so

that (x) holds, then the vectors are linearly dependent. For example, for

nonzero e,

x1 = Poxg + - - - + BnXn

Example of linearly independent vector set:

1 1

X1

Aalto University



Adding to this linearly independent vector set a new vector x3, we obtain

that the new set

(1] 1] 0 |
1 1 0

becomes linearly dependent because

X1 = X9 + 2x3
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Given N vectors X1,X9,...,X, consider the set of all vectors that may

be formed as a linear combination of the vectors x;,

N
X = Z ;X
1=1

This set forms a vector space and the vectors X; are said to span this
space. If the vectors x; are linearly independent, they are said to form a
basis for this space and the number of basis vectors N is referred to as the

space dimension. The basis for a vector space is not uniquel!
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n X m matrix:

A ={a;} =

Symmetric square matrix:

Hermitian square matrix:
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Matrices

ail
a1
a3l

ai2
a22
a32

ai3
a23
a33

an3

A1m
a2m,
A3m




Some properties (apply to transpose (-) as well):

(A+BY = A7+ BY Ay = A, (AB)Y =B¥AH

Column and row representations of an n X m matrix:

_rl
ry
A =|cq,c9,...,cp] =

n

7 -

(*)

The rank of A is defined as a number of linearly independent columns in

(%), or, equivalently, the number of linearly independent row vectors in ().

Important property:

rank{A} = rank{AAY} = rank{A" A}
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For any n X m matrix:
rank{A} < min{m,n}
The matrix A is said to be of full rank if
rank{A} = min{m, n}

If the square matrix A is of full rank, then there exists a unique matrix
A_l, called the inverse of A:

A TA=AA1 =1
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The matrix I is the so-called identity matrix:

10 0 --- 0
01 0 --- 0
I=(00 1 0
00 -+ 0 1

The n x m matrix A is called singular if its inverse does not exist (i.e., if
rank{A} < n).

Some properties of inverse:

(AB)—I _ B—lA—l ’ (AH)—l _ (A—l)H
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Determinant of a square n X m matrix (for any %):
n .
detA = (—1)""a;det Ay
k=1

where A is the (n — 1) X (n — 1) matrix formed by deleting the ith
row and the kth column of A.

Example:
ajl] ai2 ai3
A = | ao1 agy as3
a3 az2 as3 |
a a a a a a
detA — a1 22 423 — as 21 G23 + a3 21 a22
a32 a33 a3l as3 a3] as2
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Property: an n X m matrix A is invertible (nonsingular) if and only if its

determinant is nonzero

detA # 0

Some additional important properties of determinant:

det{AB} = detA detB, det{aA} =a"detA

detA~! = detAl = detA

~ detA’

Another important function of matrix is trace:

n
trace{A} = Z a;
1=1
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Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering,

etc.) require the solution to a set of linear equations:

a11r1 +aipxo + -+ aymTm = b0y
a9171 + agexo + - - - + agymTm = bo

ap1T1 + ap2xo + - + anmTm = bn

In matrix notation
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Case 1: square matrix A (m = n). The nature of solution depends upon

whether or not A is singular. In the nonsingular case
_ A1
x=A Db

It A is singular, there may be no solution or many solutions.

Example:

r1+x9 = 1

1+ 19 = 2 no solution

However, it we modify the equations:

1

1 many solutions

Tr1 + I9

Tr1 + 9
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Case 2: rectangular matrix A (m < n). More equations than unknowns

and, in general, no solution exist. The system is called overdetermined.
In the case when A is a full rank matrix, and, therefore, AHA s
nonsingular, the common approach is to find least squares solution by

minimizing the norm of the error vector

el = |[b— Ax]||?

= (b—Ax)"(b - Ax)

— be—XHAHb—be_IAX—FXHAHAX
- x—(AHA)_lAHb} (AHA) [X—(AHA)—lAHb
+ _be—bHA(AHA)_lAHb}
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The second term is independent ot x. Therefore, the LS solution is
xrg = (ATA)"1Ap
The best (LS) approximation of b is given by
b=Ax;q=AA"A)'ATb =Pyb

where
Py =AA7A)"1AH

is the so-called projection matrix with the properties

Ppra=a
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if the vector a belongs to the column-space of A and
PAa =0

it this vector is orthogonal to the columns of A

The minimum LS error
2 2
lellmin = [/b— Axpg]|

min
— |[(I- AAHFA)"TATD|?
2 1 2 Hp L
= |[[(I=PA)b||” = ||Pab||"=b"Pyb

where Pi& =1 — P A is the projection matrix on the subspace orthogonal

to the column-space of A.
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Alternatively, the LS solution is found from the normal equations
AHAx = Allp

Case 3: rectangular matrix A (n < m). Fewer equations than unknowns

and, provided the equations are consistent, there are many solutions. The

system is called underdetermined.
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Special matrix forms

Diagonal square matrix:

A = diag{ai1,a22, ..

Exchange matrix:

Aalto University

ai1 O
0 a99
. 7a/nn} — O O
I 0O O
0 0 1]
0 0 1
0 1 0




Toeplitz matrix:

ik = Q41 k+1 forall 2,k <n

Example:

= N =
N NN = W
(NS GVE N\
=W N~
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2 4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix A
Q(x) = x Ax

Similarly, Hermitian form of a Hermitian square matrix A
Q(x) = x Ax

Symmetric (Hermitian) matrices are positive semidefinite if Q(x) > 0 for
all nonzero x.
Example: the matrix A = yy*? is positive semidefinite, where y is an

arbitrary complex vector:

Q(x) =x"yy"x = |x"y|* > 0
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Eigenvalues and eigenvectors

Consider the characteristic equation of an n X n matrix A
Au = A\u
This is equivalent to the following set of homogeneous linear equations
(A —Au=0
Therefore, the matrix A — Al is singular. Hence,
p(A) =det(A —AI) =0

where p(\) is the so-called characteristic polynomial with n roots \;

(¢ =1,2...,n) being the eigenvalues of A.

Aalto University



For each eigenvalue A;, the matrix A — \;I is singular, and, therefore,

there will be at least one nonzero eigenvector that solves the equation
AU_Z' — )\Z-ui

Since for any eigenvector u; any vector au; will be also an eigenvector,

the eigenvectors are often normalized.
;|| =1, 1=1,2,...,n

Property 1: The eigenvectors uy, ug, ..., Uy corresponding to distinct

eigenvalues are linearly independent.
Property 2: If rank{ A} = m, then there will be n — m independent

solutions to the homogeneous equation Au; = 0. These solutions form

the so-called null-space of A.
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Property 3: The eigenvalues of a Hermitian matrix are real.

Proof: From the characteristic equation Au; = A\;ju;, we have
uZ-HAuZ- = )\iuflui ()
Taking the Hermitian transpose of (%), we have
ul Ay, = Arufly, (%%)
Since A is Hermitian (A = AH), (x%) becomes

ul Au; = Auily; (% * *)

Finally, comparison of (x) and (x * %) shows that \; are real.
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Property 4: A Hermitian matrix is positive definite if and only if the

eigenvalues of A are positive.

Similar property holds for positive semidefinite, negative definite, or

negative semidefinite matrices.

A useful relationship between matrix determinant and eigenvalues:
n
det{A} =]\
1=1

Therefore, any matrix is invertible (nonsingular) if and only if all of its

eigenvalues are nonzero.
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Property 5: The eigenvectors of a Hermitian matrix corresponding to
H

(

distinct eigenvalues are orthogonal, i.e., if A; # Ap, then ui*ug = 0.
Proof: Let A; and Aj be two distinct eigenvalues of A. Then

Aui — )\,,;117; and Auk — )\kuk
Multiplying these equations by ug and uZ-H, respectively, yields

uéIAuZ- = )\iugui, uf[Auk = )\kufluk ()

Taking the Hermitian transpose of the second equation of (%) and
remarking that A is Hermitian (i.e., A = A and AL = Ap), yields

uﬁAui = )\kugui ()
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Now, subtracting () from the first equation of () leads to
0= (N — )\k)u]]gui
Since the eigenvalues are distinct (i.e., A\; # i), we have that
ul]gui =0

which proofs the orthogonality of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this
property can be extended to any n X n Hermitian matrix with arbitrary

(not necessarily distinct) eigenvalues.
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Eigendecomposition

For an n X m matrix A, we may perform an eigendecomposition:
A =UAU"! ()
To do this, let us write the set of equations
Au, = )\u;, 1=1,2,...,n
in the form
Aluj,ug, ..., uy| = [Auyg, Aous, ..., \yuy|, or, equivalentely

AU =UA with A =diag{A{,\9,..., A\n} (%)

and nonsingular U. Multiplying (%%) on the right by U™! we get (x).
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For a Hermitian matrix, the following property holds because of the

orthonormality of eigenvectors:
UlU =1

Hence, U is unitary (ie., UH = U_l), and. therefore, the

eigendecomposition takes the form
A =UAUY

or, equivalently,

n
A = Z )\iuiuf]
1=1
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Using the unitary property of U, it is easy to find matrix inverse via

eigendecomposition:

A~ = (uAauf -l
_ (UH)—IA—lU—l
— uAa—luf

Equivalently
RN B
A :Zyuiui
i=1""

Hence, the inverse does not affect eigenvectors but transforms eigenvalues

A; to 1/)\/,;.
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In many applications, matrices may be very close to singular
(ill-conditioned) and, therefore, their inverse may be unstable. We may
wish to stabilize the problem by adding a constant to each term along

diagonal (the so-called diagonal loading):
A=B+dal
This operation leaves eigenvectors unchanged but changes eigenvalues:
Au; = Bu; + au; = (\; + a)u;
where \; and u; are the eigenvalues and eigenvectors of B:

Buz- = )\Z-ui
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We can reformulate the trace of A in terms of eigenvalues:

n
trace{A} = Z Yy (%)
1=1
Similarly,
1 “1
trace{A™ "} = Z)\_
i=1""

This property can be easily proven using the eigendecomposition and the
property trace{ A 4+ B} = trace{A} + trace{B}. In several
applications (such as adaptive filtering), we need some simple and close

upper bound for the maximal eigenvalue Apax. From (%), we obtain that

Amax < trace{A}
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Singular value decomposition

For a nonsquare n X m matrix A, we may perform the SVD instead of

eigendecomposition:
A =UAVY

or, equivalently
n
AZZ)\iuiVZH if n<m
1=1

and

m
A:Z)‘iuivqu itn>m
1=1

where u; and v; are the n X 1 and m X 1 left and right singular vectors,

respectively, and \; are singular values.
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