USEFUL CONCEPTS AND FACTS FROM LINEAR ALGEBRA

Sergiy A. Vorobyov

Department of Information and Communications Engineering
Aalto University

Vectors

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{N}
\end{array}\right]
$$

Vector transpose and Hermitian transpose:

$$
\begin{gathered}
\mathbf{x}^{T}=\left[x_{1}, x_{2}, \ldots, x_{N}\right] \\
\mathbf{x}^{H}=\left(\mathbf{x}^{T}\right)^{*}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right]
\end{gathered}
$$

Vector Euclidean norm:

$$
\|\mathbf{x}\|=\left\{\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right\}^{1 / 2}=\sqrt{\mathbf{x}^{H} \mathbf{x}}
$$

The scalar (inner) product of two complex vectors:

$$
\mathbf{a}^{H} \mathbf{b}=\sum_{i=1}^{N} a_{i}^{*} b_{i}
$$

Cauchy-Schwarz inequality

$$
\left|\mathbf{a}^{H} \mathbf{b}\right| \leq\|\mathbf{a}\| \cdot\|\mathbf{b}\|
$$

Orthogonal vectors:

$$
\mathbf{a}^{H} \mathbf{b}=\mathbf{b}^{H} \mathbf{a}=0
$$

Example: consider the output of an LTI system (filter)

$$
y(n)=\sum_{k=0}^{N-1} h(k) x(n-k)=\mathbf{h}^{T} \mathbf{x}(n)
$$

where

$$
\mathbf{h}=\left[\begin{array}{c}
h(0) \\
h(1) \\
\cdots \\
h(N-1)
\end{array}\right], \quad \mathbf{x}(n)=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\cdots \\
x(n-N+1)
\end{array}\right]
$$

The set of vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ is said to be linearly independent if

$$
\begin{equation*}
\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\cdots+\alpha_{n} \mathbf{x}_{n}=0 \tag{*}
\end{equation*}
$$

implies that $\alpha_{i}=0$ for all i. If any set of nonzero α_{i} can be found so that $(*)$ holds, then the vectors are linearly dependent. For example, for nonzero α_{1},

$$
\mathbf{x}_{1}=\beta_{2} \mathbf{x}_{2}+\cdots+\beta_{n} \mathbf{x}_{n}
$$

Example of linearly independent vector set:

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Adding to this linearly independent vector set a new vector \mathbf{x}_{3}, we obtain that the new set

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

becomes linearly dependent because

$$
\mathbf{x}_{1}=\mathbf{x}_{2}+2 \mathbf{x}_{3}
$$

Given N vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, consider the set of all vectors that may be formed as a linear combination of the vectors \mathbf{x}_{i},

$$
\mathbf{x}=\sum_{i=1}^{N} \alpha_{i} \mathbf{x}_{i}
$$

This set forms a vector space and the vectors \mathbf{x}_{i} are said to span this space. If the vectors \mathbf{x}_{i} are linearly independent, they are said to form a basis for this space and the number of basis vectors N is referred to as the space dimension. The basis for a vector space is not unique!

Matrices

$n \times m$ matrix:

$$
\mathbf{A}=\left\{a_{i k}\right\}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 m} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 m} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 m} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n m}
\end{array}\right]
$$

Symmetric square matrix:

$$
\mathbf{A}^{T}=\mathbf{A}
$$

Hermitian square matrix:

$$
\mathbf{A}^{H}=\mathbf{A}
$$

Some properties (apply to transpose $(\cdot)^{T}$ as well):

$$
(\mathbf{A}+\mathbf{B})^{H}=\mathbf{A}^{H}+\mathbf{B}^{H}, \quad\left(\mathbf{A}^{H}\right)^{H}=\mathbf{A}, \quad(\mathbf{A B})^{H}=\mathbf{B}^{H} \mathbf{A}^{H}
$$

Column and row representations of an $n \times m$ matrix:

$$
\mathbf{A}=\left[\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{m}\right]=\left[\begin{array}{c}
\mathbf{r}_{1}^{H} \tag{*}\\
\mathbf{r}_{2}^{H} \\
\vdots \\
\mathbf{r}_{n}^{H}
\end{array}\right]
$$

The rank of \mathbf{A} is defined as a number of linearly independent columns in $(*)$, or, equivalently, the number of linearly independent row vectors in $(*)$. Important property:

$$
\operatorname{rank}\{\mathbf{A}\}=\operatorname{rank}\left\{\mathbf{A} \mathbf{A}^{H}\right\}=\operatorname{rank}\left\{\mathbf{A}^{H} \mathbf{A}\right\}
$$

For any $n \times m$ matrix:

$$
\operatorname{rank}\{\mathbf{A}\} \leq \min \{m, n\}
$$

The matrix \mathbf{A} is said to be of full rank if

$$
\operatorname{rank}\{\mathbf{A}\}=\min \{m, n\}
$$

If the square matrix \mathbf{A} is of full rank, then there exists a unique matrix \mathbf{A}^{-1}, called the inverse of \mathbf{A} :

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

The matrix \mathbf{I} is the so-called identity matrix:

$$
\mathbf{I}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

The $n \times n$ matrix \mathbf{A} is called singular if its inverse does not exist (i.e., if $\operatorname{rank}\{\mathbf{A}\}<n$).
Some properties of inverse:

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}, \quad\left(\mathbf{A}^{H}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{H}
$$

Determinant of a square $n \times n$ matrix (for any i):

$$
\operatorname{det} \mathbf{A}=\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det} \mathbf{A}_{i k}
$$

where $\mathbf{A}_{i k}$ is the $(n-1) \times(n-1)$ matrix formed by deleting the i th row and the k th column of \mathbf{A}.
Example:

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
\operatorname{det} \mathbf{A}=a_{11}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
\end{gathered}
$$

Property: an $n \times n$ matrix \mathbf{A} is invertible (nonsingular) if and only if its determinant is nonzero

$$
\operatorname{det} \mathbf{A} \neq 0
$$

Some additional important properties of determinant:

$$
\operatorname{det}\{\mathbf{A B}\}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}, \quad \operatorname{det}\{\alpha \mathbf{A}\}=\alpha^{n} \operatorname{det} \mathbf{A}
$$

$$
\operatorname{det} \mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}, \quad \operatorname{det} \mathbf{A}^{T}=\operatorname{det} \mathbf{A}
$$

Another important function of matrix is trace:

$$
\operatorname{trace}\{\mathbf{A}\}=\sum_{i=1}^{n} a_{i i}
$$

Linear equations

Many practical DSP problems (such as signal modeling, Wiener filtering, etc.) require the solution to a set of linear equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 m} x_{m} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 m} x_{m} & =b_{2} \\
& \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n m} x_{m} & =b_{n}
\end{aligned}
$$

In matrix notation

$$
\mathbf{A x}=\mathbf{b}
$$

Case 1: square matrix $\mathbf{A}(m=n)$. The nature of solution depends upon whether or not \mathbf{A} is singular. In the nonsingular case

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

If \mathbf{A} is singular, there may be no solution or many solutions.
Example:

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}=2
\end{aligned} \quad \text { no solution }
$$

However, if we modify the equations:

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+x_{2}=1
\end{aligned} \quad \text { many solutions }
$$

Case 2: rectangular matrix $\mathbf{A}(m<n)$. More equations than unknowns and, in general, no solution exist. The system is called overdetermined. In the case when \mathbf{A} is a full rank matrix, and, therefore, $\mathbf{A}^{H} \mathbf{A}$ is nonsingular, the common approach is to find least squares solution by minimizing the norm of the error vector

$$
\begin{aligned}
\|\mathbf{e}\|^{2} & =\|\mathbf{b}-\mathbf{A} \mathbf{x}\|^{2} \\
& =(\mathbf{b}-\mathbf{A} \mathbf{x})^{H}(\mathbf{b}-\mathbf{A} \mathbf{x}) \\
& =\mathbf{b}^{H} \mathbf{b}-\mathbf{x}^{H} \mathbf{A}^{H} \mathbf{b}-\mathbf{b}^{H} \mathbf{A} \mathbf{x}+\mathbf{x}^{H} \mathbf{A}^{H} \mathbf{A} \mathbf{x} \\
& =\left[\mathbf{x}-\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}\right]^{H}\left(\mathbf{A}^{H} \mathbf{A}\right)\left[\mathbf{x}-\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}\right] \\
& +\left[\mathbf{b}^{H} \mathbf{b}-\mathbf{b}^{H} \mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}\right]
\end{aligned}
$$

The second term is independent of \mathbf{x}. Therefore, the LS solution is

$$
\mathbf{x}_{\mathrm{LS}}=\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}
$$

The best (LS) approximation of \mathbf{b} is given by

$$
\hat{\mathbf{b}}=\mathbf{A} \mathbf{x}_{\mathrm{LS}}=\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H} \mathbf{b}=\mathbf{P}_{\mathbf{A}} \mathbf{b}
$$

where

$$
\mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}
$$

is the so-called projection matrix with the properties

$$
\mathbf{P}_{\mathbf{A}} \mathbf{a}=\mathbf{a}
$$

if the vector \mathbf{a} belongs to the column-space of \mathbf{A} and

$$
\mathbf{P}_{\mathbf{A}} \mathbf{a}=0
$$

if this vector is orthogonal to the columns of \mathbf{A}
The minimum LS error

$$
\begin{aligned}
\|e\|_{\text {min }}^{2} & =\left\|\mathbf{b}-\mathbf{A} \mathbf{x}_{\mathrm{LS}}\right\|^{2} \\
& =\left\|\left(\mathbf{I}-\mathbf{A}\left(\mathbf{A}^{H} \mathbf{A}\right)^{-1} \mathbf{A}^{H}\right) \mathbf{b}\right\|^{2} \\
& =\left\|\left(\mathbf{I}-\mathbf{P}_{\mathbf{A}}\right) \mathbf{b}\right\|^{2}=\left\|\mathbf{P}_{\mathbf{A}}^{\perp} \mathbf{b}\right\|^{2}=\mathbf{b}^{H} \mathbf{P}_{\mathbf{A}}^{\perp} \mathbf{b}
\end{aligned}
$$

where $\mathbf{P}_{\mathbf{A}}^{\perp}=\mathbf{I}-\mathbf{P}_{\mathbf{A}}$ is the projection matrix on the subspace orthogonal to the column-space of \mathbf{A}.

Alternatively, the LS solution is found from the normal equations

$$
\mathbf{A}^{H} \mathbf{A} \mathbf{x}=\mathbf{A}^{H} \mathbf{b}
$$

Case 3: rectangular matrix $\mathbf{A}(n<m)$. Fewer equations than unknowns and, provided the equations are consistent, there are many solutions. The system is called underdetermined.

Special matrix forms

Diagonal square matrix:

$$
\mathbf{A}=\operatorname{diag}\left\{a_{11}, a_{22}, \ldots, a_{n n}\right\}=\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & \cdots & 0 \\
0 & a_{22} & 0 & \cdots & 0 \\
0 & 0 & a_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & a_{n n}
\end{array}\right]
$$

Exchange matrix:

$$
\mathbf{J}=\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & 1 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Toeplitz matrix:

$$
a_{i k}=a_{i+1, k+1} \text { for all } i, k<n
$$

Example:

$$
\left[\begin{array}{llll}
1 & 3 & 2 & 4 \\
2 & 1 & 3 & 2 \\
7 & 2 & 1 & 3 \\
1 & 7 & 2 & 1
\end{array}\right]
$$

2.4 Quadratic and Hermitian forms

Quadratic form of a real symmetric square matrix \mathbf{A} :

$$
Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}
$$

Similarly, Hermitian form of a Hermitian square matrix \mathbf{A} :

$$
Q(\mathbf{x})=\mathbf{x}^{H} \mathbf{A} \mathbf{x}
$$

Symmetric (Hermitian) matrices are positive semidefinite if $Q(\mathbf{x}) \geq 0$ for all nonzero \mathbf{x}.
Example: the matrix $\mathbf{A}=\mathbf{y y}{ }^{H}$ is positive semidefinite, where \mathbf{y} is an arbitrary complex vector:

$$
Q(\mathbf{x})=\mathbf{x}^{H} \mathbf{y} \mathbf{y}^{H} \mathbf{x}=\left|\mathbf{x}^{H} \mathbf{y}\right|^{2} \geq 0
$$

Eigenvalues and eigenvectors

Consider the characteristic equation of an $n \times n$ matrix \mathbf{A} :

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}
$$

This is equivalent to the following set of homogeneous linear equations

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{u}=0
$$

Therefore, the matrix $\mathbf{A}-\lambda \mathbf{I}$ is singular. Hence,

$$
p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

where $p(\lambda)$ is the so-called characteristic polynomial with n roots λ_{i} $(i=1,2 \ldots, n)$ being the eigenvalues of \mathbf{A}.

For each eigenvalue λ_{i}, the matrix $\mathbf{A}-\lambda_{i} \mathbf{I}$ is singular, and, therefore, there will be at least one nonzero eigenvector that solves the equation

$$
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

Since for any eigenvector \mathbf{u}_{i} any vector $\alpha \mathbf{u}_{i}$ will be also an eigenvector, the eigenvectors are often normalized:

$$
\left\|\mathbf{u}_{i}\right\|=1, \quad i=1,2, \ldots, n
$$

Property 1: The eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ corresponding to distinct eigenvalues are linearly independent.
Property 2: If $\operatorname{rank}\{\mathbf{A}\}=m$, then there will be $n-m$ independent solutions to the homogeneous equation $\mathbf{A u}_{i}=0$. These solutions form the so-called null-space of \mathbf{A}.

Property 3: The eigenvalues of a Hermitian matrix are real.
Proof: From the characteristic equation $\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$, we have

$$
\begin{equation*}
\mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}^{H} \mathbf{u}_{i} \tag{*}
\end{equation*}
$$

Taking the Hermitian transpose of $(*)$, we have

$$
\begin{equation*}
\mathbf{u}_{i}^{H} \mathbf{A}^{H} \mathbf{u}_{i}=\lambda_{i}^{*} \mathbf{u}_{i}^{H} \mathbf{u}_{i} \tag{**}
\end{equation*}
$$

Since \mathbf{A} is Hermitian $\left(\mathbf{A}=\mathbf{A}^{H}\right),(* *)$ becomes

$$
\mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}=\lambda_{i}^{*} \mathbf{u}_{i}^{H} \mathbf{u}_{i}
$$

Finally, comparison of $(*)$ and $(* * *)$ shows that λ_{i} are real.

Property 4: A Hermitian matrix is positive definite if and only if the eigenvalues of \mathbf{A} are positive.

Similar property holds for positive semidefinite, negative definite, or negative semidefinite matrices.

A useful relationship between matrix determinant and eigenvalues:

$$
\operatorname{det}\{\mathbf{A}\}=\prod_{i=1}^{n} \lambda_{i}
$$

Therefore, any matrix is invertible (nonsingular) if and only if all of its eigenvalues are nonzero.

Property 5: The eigenvectors of a Hermitian matrix corresponding to distinct eigenvalues are orthogonal, i.e., if $\lambda_{i} \neq \lambda_{k}$, then $\mathbf{u}_{i}^{H} \mathbf{u}_{k}=0$.

Proof: Let λ_{i} and λ_{k} be two distinct eigenvalues of \mathbf{A}. Then

$$
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad \text { and } \quad \mathbf{A} \mathbf{u}_{k}=\lambda_{k} \mathbf{u}_{k}
$$

Multiplying these equations by \mathbf{u}_{k}^{H} and \mathbf{u}_{i}^{H}, respectively, yields

$$
\begin{equation*}
\mathbf{u}_{k}^{H} \mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{k}^{H} \mathbf{u}_{i}, \quad \mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{k}=\lambda_{k} \mathbf{u}_{i}^{H} \mathbf{u}_{k} \tag{*}
\end{equation*}
$$

Taking the Hermitian transpose of the second equation of $(*)$ and remarking that \mathbf{A} is Hermitian (i.e., $\mathbf{A}^{H}=\mathbf{A}$ and $\lambda_{k}^{*}=\lambda_{k}$), yields

$$
\begin{equation*}
\mathbf{u}_{k}^{H} \mathbf{A} \mathbf{u}_{i}=\lambda_{k} \mathbf{u}_{k}^{H} \mathbf{u}_{i} \tag{**}
\end{equation*}
$$

Now, subtracting $(* *)$ from the first equation of $(*)$ leads to

$$
0=\left(\lambda_{i}-\lambda_{k}\right) \mathbf{u}_{k}^{H} \mathbf{u}_{i}
$$

Since the eigenvalues are distinct (i.e., $\lambda_{i} \neq \lambda_{k}$), we have that

$$
\mathbf{u}_{k}^{H} \mathbf{u}_{i}=0
$$

which proofs the orthogonality of eigenvectors.

Remark: Although proven above for the distinct eigenvalue case, this property can be extended to any $n \times n$ Hermitian matrix with arbitrary (not necessarily distinct) eigenvalues.

Eigendecomposition

For an $n \times n$ matrix \mathbf{A}, we may perform an eigendecomposition:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1} \tag{*}
\end{equation*}
$$

To do this, let us write the set of equations

$$
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}, \quad i=1,2, \ldots, n
$$

in the form

$$
\mathbf{A}\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right]=\left[\lambda_{1} \mathbf{u}_{1}, \lambda_{2} \mathbf{u}_{2}, \ldots, \lambda_{n} \mathbf{u}_{n}\right], \quad \text { or, equivalentely }
$$

$$
\mathbf{A} \mathbf{U}=\mathbf{U} \boldsymbol{\Lambda} \quad \text { with } \quad \boldsymbol{\Lambda}=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

and nonsingular \mathbf{U}. Multiplying $(* *)$ on the right by \mathbf{U}^{-1}, we get $(*)$.

For a Hermitian matrix, the following property holds because of the orthonormality of eigenvectors:

$$
\mathbf{U}^{H} \mathbf{U}=\mathbf{I}
$$

Hence, \mathbf{U} is unitary (i.e., $\mathbf{U}^{H}=\mathbf{U}^{-1}$), and, therefore, the eigendecomposition takes the form

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{H}
$$

or, equivalently,

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{H}
$$

Using the unitary property of \mathbf{U}, it is easy to find matrix inverse via eigendecomposition:

$$
\begin{aligned}
\mathbf{A}^{-1} & =\left(\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{H}\right)^{-1} \\
& =\left(\mathbf{U}^{H}\right)^{-1} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{-1} \\
& =\mathbf{U} \boldsymbol{\Lambda}^{-1} \mathbf{U}^{H}
\end{aligned}
$$

Equivalently

$$
\mathbf{A}^{-1}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{u}_{i}^{H}
$$

Hence, the inverse does not affect eigenvectors but transforms eigenvalues λ_{i} to $1 / \lambda_{i}$.

In many applications, matrices may be very close to singular (ill-conditioned) and, therefore, their inverse may be unstable. We may wish to stabilize the problem by adding a constant to each term along diagonal (the so-called diagonal loading):

$$
\mathbf{A}=\mathbf{B}+\alpha \mathbf{I}
$$

This operation leaves eigenvectors unchanged but changes eigenvalues:

$$
\mathbf{A} \mathbf{u}_{i}=\mathbf{B} \mathbf{u}_{i}+\alpha \mathbf{u}_{i}=\left(\lambda_{i}+\alpha\right) \mathbf{u}_{i}
$$

where λ_{i} and \mathbf{u}_{i} are the eigenvalues and eigenvectors of \mathbf{B} :

$$
\mathbf{B} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

We can reformulate the trace of \mathbf{A} in terms of eigenvalues:

$$
\begin{equation*}
\operatorname{trace}\{\mathbf{A}\}=\sum_{i=1}^{n} \lambda_{i} \tag{*}
\end{equation*}
$$

Similarly,

$$
\operatorname{trace}\left\{\mathbf{A}^{-1}\right\}=\sum_{i=1}^{n} \frac{1}{\lambda_{i}}
$$

This property can be easily proven using the eigendecomposition and the property trace $\{\mathbf{A}+\mathbf{B}\}=\operatorname{trace}\{\mathbf{A}\}+\operatorname{trace}\{\mathbf{B}\}$. In several applications (such as adaptive filtering), we need some simple and close upper bound for the maximal eigenvalue $\lambda_{\text {max }}$. From $(*)$, we obtain that

$$
\lambda_{\max } \leq \operatorname{trace}\{\mathbf{A}\}
$$

Singular value decomposition

For a nonsquare $n \times m$ matrix \mathbf{A}, we may perform the SVD instead of eigendecomposition:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{H}
$$

or, equivalently

$$
\mathbf{A}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} \quad \text { if } n<m
$$

and

$$
\mathbf{A}=\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{H} \quad \text { if } n>m
$$

where \mathbf{u}_{i} and \mathbf{v}_{i} are the $n \times 1$ and $m \times 1$ left and right singular vectors, respectively, and λ_{i} are singular values.

