# Lecture 1 Convex sets

- subspace, affine set, convex set, convex cone
- simple examples and properties
- combination and hulls
- ellipsoids, polyhedra, norm balls
- affine and projective transformations
- separating hyperplanes
- generalized inequalities

## **Subspaces**

 $S \subseteq \mathbf{R}^n$  is a subspace if

$$x, y \in S, \quad \lambda, \mu \in \mathbf{R} \implies \lambda x + \mu y \in S$$

**Geometrically:**  $x, y \in S \Rightarrow \text{ plane through } 0, x, y \subseteq S$ 

## Representation

range(A) = 
$$\{Aw \mid w \in \mathbf{R}^q\}$$
  
=  $\{w_1a_1 + \dots + w_qa_q \mid w_i \in \mathbf{R}\}$   
=  $\operatorname{span}(\{a_1, a_2, \dots, a_q\})$ 

where  $A = [a_1 \cdots a_q]$ 

nullspace(B) = 
$$\{x \mid Bx = 0\}$$
  
=  $\{x \mid b_1^T x = 0, \dots, b_p^T x = 0\}$ 

where 
$$B = \left[ egin{array}{c} b_1^T \ dots \ b_p^T \end{array} 
ight]$$

## **Affine sets**

 $S \subseteq \mathbf{R}^n$  is affine if

$$x, y \in S, \ \lambda, \mu \in \mathbf{R}, \ \lambda + \mu = 1 \Longrightarrow \lambda x + \mu y \in S$$

**Geometrically:**  $x, y \in S \Rightarrow$  line through  $x, y \subseteq S$ 



## Representations

range of affine function

$$S = \{Az + b \mid z \in \mathbf{R}^q\}$$

via linear equalities

$$S = \{x \mid b_1^T x = c_1, \dots, b_p^T x = c_p\}$$

## **Convex sets**

 $S \subseteq \mathbf{R}^n$  is a *convex set* if

$$x, y \in S, \ \lambda, \mu \ge 0, \ \lambda + \mu = 1 \Longrightarrow \lambda x + \mu y \in S$$

**Geometrically:**  $x, y \in S \Rightarrow \text{ segment } [x, y] \subseteq S$ 

... many representations

 $S \subseteq \mathbf{R}^n$  is a convex cone if

$$x, y \in S, \ \lambda, \mu \ge 0, \implies \lambda x + \mu y \in S$$

#### **Geometrically:**

 $x,y\in S \Rightarrow \text{ 2-dim. `pie slice' between } x,y\subseteq S$ 



... many representations

## Hyperplanes and halfspaces

# Hyperplane $\{x \mid a^T x = b\} \ (a \neq 0)$

affine; subspace if b = 0

useful representation:  $\{x \mid a^T(x - x_0) = 0\}$ 

a is normal vector;  $x_0$  lies on hyperplane

Halfspace  $\{x \mid a^T x \leq b\}$   $(a \neq 0)$ 

convex; convex cone if b = 0

useful representation:  $\{x \mid a^T(x - x_0) \leq 0\}$ a is (outward) normal vector;  $x_0$  lies on boundary



#### Intersections

$$S_{\alpha} \text{ is } \begin{pmatrix} \text{subspace} \\ \text{affine} \\ \text{convex} \\ \text{convex cone} \end{pmatrix} \text{ for } \alpha \in \mathcal{A} \Longrightarrow \bigcap_{\alpha \in \mathcal{A}} S_{\alpha} \text{ is } \begin{pmatrix} \text{subspace} \\ \text{affine} \\ \text{convex} \\ \text{convex cone} \end{pmatrix}$$

**Example:** *polyhedron* is intersection of finite number of halfspaces

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, \quad i = 1, \dots, k\}$$
$$= \{x \mid Ax \leq b\}$$

 $(\leq means componentwise)$ 

a bounded polyhedron is called a polytope

In fact, every closed convex set S is (usually infinite) intersection of halfspaces:

$$S = \cap \{ \mathcal{H} \mid \mathcal{H} \text{ halfspace}, \ S \subseteq \mathcal{H} \}$$

(more later)

**Example:**  $S = \{a \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\},$   $p(t) = \sum_{k=1}^m a_k \cos kt.$ 



can express S as intersection of slabs:  $S = \bigcap_{|t| \le \pi/3} S_t$ ,

$$S_t = \{a \mid -1 \le [\cos t \cdot \cdots \cos mt] \mid a \le 1\}.$$



## Combinations and hulls

$$y = \lambda_1 x_1 + \cdots + \lambda_k x_k$$
 is a

- linear combination of  $x_1, \ldots, x_k$ ;
- affine combination if  $\sum_{i} \lambda_{i} = 1$ ;
- convex combination if  $\sum_{i} \lambda_{i} = 1$ ,  $\lambda_{i} \geq 0$ ;
- conic combination if  $\lambda_i \geq 0$ .

(Linear,...) **hull** of S: set of all (linear,...) combinations from S

linear hull:  $\operatorname{span}(S)$ 

affine hull:  $\mathbf{Aff}(S)$ 

convex hull:  $\mathbf{Co}(S)$ 

conic hull: Cone(S)

$$\mathbf{Co}(S) = \cap \{G \mid S \subseteq G, G \text{ convex } \}, \dots$$

## **Example**

$$S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

what is linear, affine, ..., hull?

## **Ellipsoids**

$$\mathcal{E} = \{x \mid (x - x_c)^T A^{-1} (x - x_c) \le 1\}$$

$$(A = A^T \succ 0; x_c \in \mathbf{R}^n \text{ center})$$



- ullet semiaxis lengths:  $\sqrt{\lambda_i}$ ;  $\lambda_i$  eigenvalues of A
- volume:  $\alpha_n (\prod \lambda_i)^{1/2} = \alpha_n (\det A)^{1/2}$

#### Other descriptions

• 
$$\mathcal{E} = \{Bu + x_c \mid ||u|| \le 1\} \ (||u|| = \sqrt{u^T u})$$

$$\bullet \ \mathcal{E} = \{x \mid f(x) \le 0\}$$

$$f(x) = x^{T}Cx + 2d^{T}x + e$$
$$= \begin{bmatrix} x \\ 1 \end{bmatrix}^{T} \begin{bmatrix} C & d \\ d^{T} & e \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$(C = C^T > 0, e - d^T C^{-1} d < 0)$$

Exercise: convert among representations; give center, semiaxes, volume.

# **Polyhedra**



## **Examples**

- nonnegative orthant  $\{x \in \mathbf{R}^n \mid x \succeq 0\}$
- k-simplex  $\mathbf{Co}\{x_0, \ldots, x_k\}$  with  $x_0, \ldots, x_k$  affinely independent, i.e.,

$$\operatorname{rank}\left(\left[\begin{array}{ccc} x_0 & x_1 & \cdots & x_k \\ 1 & 1 & \cdots & 1 \end{array}\right]\right) = k+1,$$

or equivalently,  $x_1-x_0,\ldots,x_k-x_0$  lin. indep.

• standard simplex  $\{x \in \mathbf{R}^n \mid x \succeq 0, \sum_i x_i = 1\}$  also called probability simplex

 $Convex \ sets$  1 – 11

## Norm balls

 $f: \mathbf{R}^n \to \mathbf{R}$  is a norm if

- 1.  $f(x) \ge 0$ ,  $f(x) = 0 \implies x = 0$
- 2. f(tx) = |t| f(x), for all t
- 3.  $f(x+y) \le f(x) + f(y)$
- (2),(3)  $\Rightarrow$  the ball  $\{x \mid f(x-x_c) \leq 1\}$  is convex.

#### **Examples**

• on  $\mathbf{R}^n$ :  $||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$   $(p \ge 1)$ ;  $||x||_{\infty} = \max_i |x_i|$ 



ullet on  ${f R}^{m imes n}$ : spectral norm

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sqrt{\lambda_{\max}(A^T A)}$$

If f(x) is a norm then

$$S = \{(x, t) \mid f(x) \le t\}$$

is a convex cone.

e.g., Euclidean norm: the second-order cone, also called quadratic or Lorentz cone

$$S = \{(x,t) \mid \sqrt{x^T x} \le t\}$$

$$= \left\{ (x,t) \mid \begin{bmatrix} x \\ t \end{bmatrix}^T \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le 0, \ t \ge 0 \right\}$$



## **Affine transformations**

suppose f is affine, i.e., linear plus constant:

$$f(x) = Ax + b$$

if S, T convex, then so are

$$f^{-1}(S) = \{x \mid Ax + b \in S\}$$
$$f(T) = \{Ax + b \mid x \in T\}$$

**Example:** coordinate projection

$$\left\{ x \left| \left[ \begin{array}{c} x \\ y \end{array} \right] \in S \text{ for some } y \right\}$$

 $Convex \ sets$  1 – 14

## Linear matrix inequalities

$$\mathcal{P} = \{ A \in \mathbf{R}^{n \times n} \mid A = A^T, A \succeq 0 \}$$

is a convex cone, called the *positive semidefinite* (PSD) cone.  $(A \succeq 0 \text{ means positive semidefinite.})$ 

$$\mathcal{P} = \bigcap_{z \in \mathbf{R}^n} \left\{ A = A^T \mid z^T A z = \sum_{i,j} z_i z_j A_{ij} \ge 0 \right\},\,$$

i.e., intersection of infinite number of halfspaces in  $\mathbf{R}^{n\times n}$ 

Hence, if  $A_0, A_1, \ldots, A_m$  symmetric, the solution set of the *linear matrix inequality* 

$$A_0 + x_1 A_1 + \cdots + x_m A_m \succ 0$$

is convex

# **Projective transformation**

$$f: \mathcal{H} \to \mathbf{R}^n$$
,  $\mathcal{H} = \{x \mid c^T x + d > 0\}$   
$$f(x) = \frac{Ax + b}{c^T x + d}$$





Line segments preserved: for  $x, y \in \mathcal{H}$ ,

$$f([x,y]) = [f(x), f(y)]$$

Hence, if C convex,  $C \subseteq \mathcal{H}$ , then f(C) convex.

# Separating hyperplanes

$$S, T \text{ convex}, S \cap T = \emptyset$$
 
$$\Rightarrow \exists a \neq 0, b : \begin{cases} x \in S \Rightarrow a^T x \geq b \\ x \in T \Rightarrow a^T x \leq b \end{cases}$$

i.e., hyperplane  $\{x \mid a^Tx - b = 0\}$  separates S, T



stronger forms use strict inequality, require conditions on  $S,\ T$ 

## Supporting hyperplane

Hyperplane  $\{x \mid a^Tx = a^Tx_0\}$  supports S at  $x_0 \in \partial S$  if  $x \in S \Rightarrow a^Tx \leq a^Tx_0$ 



halfspace  $\{x \mid a^Tx \leq b\}$  contains S for  $b=a^Tx_0$  but not for smaller b

S convex  $\Rightarrow \exists$  supporting hyperplane for each  $x_0 \in \partial S$ If S closed,  $\operatorname{int} S \neq \emptyset$ , then

S convex  $\Leftarrow \exists$  supporting hyperplane for each  $x_0 \in \partial S$ 

## Generalized inequalities

suppose convex cone  $K \subseteq \mathbf{R}^n$ 

- is closed
- has nonempty interior
- is *pointed*: there is no line in K

K defines generalized inequality  $\leq_K$  in  $\mathbf{R}^n$ :

$$x \prec_K y \iff y - x \in K$$

strict version:

$$x \prec_K y \iff y - x \in \mathbf{int} K$$

#### examples:

- $K = \mathbf{R}_{+}^{n}$ :  $x \leq_{K} y$  means  $x_{i} \leq y_{i}$  (componentwise vector inequality)
- K is PSD cone in  $\{X \in \mathbf{R}^{n \times n} | X = X^T\}$ :  $X \preceq_K Y$  means Y X is PSD

(these are so common we drop K)

many properties of  $\leq_K$  similar to  $\leq$  on  $\mathbf{R}$ , e.g.,

$$\bullet x \preceq_K y, \ u \preceq_K v \implies x + u \preceq_K y + v$$

$$\bullet x \preceq_K y, y \preceq_K x \implies x = y$$

unlike  $\leq$ ,  $\leq$ <sub>K</sub> is not in general a *linear ordering* 

## **Dual cones and inequalities**

if K is a cone, dual cone is defined as

$$K^{\star} = \{ y \mid x^T y \ge 0 \text{ for all } x \in K \}$$

for 
$$K=\mathbf{R}^n_+$$
,  $K^\star=K$ , since 
$$\sum_i x_i y_i \geq 0 \text{ for all } x_i \geq 0 \iff y_i \geq 0$$

for 
$$K = \mathsf{PSD}$$
 cone,  $K^\star = K$  (called *self-dual* cones)