

Aalto University School of Electrical Engineering

CVX Tutorial (Python), Lecture 6

Convex Optimization D ELEC - E5424

October 31, 2023

Introduction

- CVX is a modeling system for disciplined convex programming
- Disciplined convex programs (DCP), are convex optimization problems that are described using a limited set of construction rules
- CVX is available in Matlab and Python
- Do not use CVX to check if a problem is convex:
 - formulate a convex problem first
 - then, confirm with CVX that it is indeed convex
- CVX is not meant for large, high dimensional, problems.

Installation

Python

CVXPY can be installed using pip install cvxpy. Further instructions available here.

MATLAB

Instructions for installation are available here. Though similar, syntax between Python and MATLAB are very different.

Disciplined Convex Programming

- Disciplined convex programming is a methodology for constructing convex optimization problems proposed by Michael Grant, Stephen Boyd, and Yinyu Ye.
- Disciplined convex programming imposes a set of conventions or rules, which we call the DCP ruleset. Problems which adhere to the ruleset can be rapidly and automatically verified as convex and converted to a solvable form.
- Problems that violate the DCP ruleset are rejected, even when the problem is convex.

Example 1: Least-Squares

Minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{b} \in \mathbb{R}^m$

```
1 import cvxpy as cp
2 import numpy as np
3
4 m = 16
5 n = 10
6 A_mat = np.random.randn(m,n)
7 b = np.random.randn(m,1)
8
9 x = cp.Variable((n,1))
10 objective = cp.Minimize(cp.norm2(A_mat@x - b))
11 problem = cp.Problem(objective)
12 result = problem.solve()
```

Example 1: Least-Squares

- If problem is feasible and bounded, the solved variables are stored in x.value
- The result contains the optimal value for the given problem. In practical problems this often correspond to a cost or error.
- Setting problem.solve(verbose=True) will give detailed information about the solver used, iterations taken etc.

Example 2: Bound-Constrained LS

 $\begin{array}{ll} \text{Minimize} & \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2 \\ \text{Subject to} & I \leq \boldsymbol{x} \leq u \end{array}$

Constraints

- CVX only supports equality constraints (==) and non-strict inequalities (<=, >=).
 - If absolutely necessary, strict inequalities can often be addressed with normalization.
- Be careful to not use the assignment operator for equality constraints (=)
- To be able to verify convexity of a problem, DCP sets further limitations to constraint definitions:
 - left- and right- hand sides of an equality constraint must be affine,
 - inequality constraints of form f(x) <= g(x), or g(x) >= f(x) are only accepted if f is convex and g concave.

Inequality Constraints

- Inequality constraints (<= and >=) can be used for scalars and matrices.
- If one side is scalar and the other is a matrix, constraints are interpreted elementwise, i.e, each element of the matrix is constrained by the (same) scalar.
- Inequalities can not be used if either side is complex.

Attributes

- CVX does not use a set membership operator such as $x \in \mathbb{R}$.
- Instead, variables (and parameters) can be given additional properties using attributes, for example:
 - $x \in \mathbb{R}^+$ can be expressed as x = cp.Variable(1, pos=True)
 - **A** $\in \mathbb{R}^{n \times n}$ Hermitian, can be expressed as A = cp.Variable((n,n), hermitian=True)

DCP Ruleset

- The DCP ruleset breaks problems down to atomic functions.
- Each atomic function has a **sign** and **curvature**.
- Using composition rules from convex analysis, DCP tries to propagate the curvature and sign from atomic functions to the complete expression.

Curvature	Meaning
constant	f(x) independent of x
affine	$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y), \forall x, y, \theta \in [0, 1]$
convex	$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \forall x, y, \theta \in [0, 1]$
concave	$f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y), \forall x, y, \theta \in [0, 1]$
unknown	DCP analysis can not determine curvature

Curvature rules

 $f(expr_1, expr_2, ..., expr_3)$ is convex if *f* is a convex function and **for each** $expr_i$ one of the following conditions hold:

- *f* is increasing in argument *i* and *expr_i* is convex.
- *f* is decreasing in argument *i* and *expr_i* is concave.
- *expr_i* is affine or constant.

Similar logic is applied to establishing concavity or affinity of a function. If a function does not fulfill conditions for convex, concave, or affine, it is unknown.

Note

If any (sub)expression has unknown curvature, CVX can not solve the problem.

Curvature analysis example

Problem Reformulation

DCP yields unknown curvature for $\sqrt{1 + x^2}$. However, we can represent the same problem with other atomic functions:

$$\sqrt{1+x^2} = \sqrt{1^2+x^2} = \|[1,x]\|_2$$

In CVXPY, cp.sqrt(1 + cp.square(x)) becomes cp.norm(cp.vstack(1, x), 2). We now have a known convex function (norm) with an affine (sub)expression. Based on the DCP ruleset this is convex.

Advanced: Semidefinite Programming

- CVXPY supports Semidefinite Programming (SDP) using additional LMI notation or attributes. Note that this feature differs from the SDP mode in MATLAB.
- In order to define Positive Semidefinite (PSD) matrix, we can either:
 - Define a variable with the PSD attribute X = cp.Variable((n,n), PSD=True).
 - Introduce a PSD constraint with the special « or » operators.

```
X = cp.Variable((n,n), PSD=True)
constraints = [X > 0]
```


Demo: Thruster Problem

Problem Definition

Consider a rocket/satellite with *n* thrusters at $p_i = (p_{ix}, p_{iy})$. Each thruster acts in the direction of θ_i . The force of each thruster can be adjusted between 0 and 1.

Problem 1:

Find Thruster forces u_i that yield given desired (total) forces and torque on the rigid body, while minimizing fuel usage (if feasible).

Alternate Formulations

Problem 2:

Find Thruster forces u_i that yield given desired forces and torque, while minimizing fuel usage (if feasible). Each thruster consists of a pair pointing towards both θ_i and $-\theta_i$.

Problem 3:

Find Thruster forces u_i that yield given desired forces and torque, while minimizing maximal force/torque error.

Extra: Shadow Prices in LP

Factory

A factory can manufacture two products which yield a profit of $20 \in$ for product 1 and $50 \in$ for product 2. Each product requires molding, assembly, painting, and inspection. These steps have the following (monthly) constraints:

 $egin{aligned} x_1 + 3x_2 &\leq 300 & [molding], \ x_1 + x_2 &\leq 300 & [assembly], \ 5x_1 + 2x_2 &\leq 500 & [painting], \ 2x_1 + 2x_2 &\leq 300 & [inspection], \end{aligned}$

where x_n is the quantity of product *n* being produced. Maximize total (monthly) profit and compute the corresponding dual values. What do they describe?

Optimization problem

S

Maximize	$20x_1 + 50x_2$
Subject to	$x_1+3x_2\leq 300,$
	$x_1+x_2\leq 300,$
	$5x_1 + 2x_2 \le 500,$
	$2x_1+2x_2\leq 300,$
	$x_1, x_2 \ge 0$

