
CVX Tutorial (Python),
Lecture 6
Convex Optimization D
ELEC - E5424

October 31, 2023



Introduction

CVX is a modeling system for disciplined convex programming

Disciplined convex programs (DCP), are convex optimization problems that are
described using a limited set of construction rules

CVX is available in Matlab and Python
Do not use CVX to check if a problem is convex:

formulate a convex problem first
then, confirm with CVX that it is indeed convex

CVX is not meant for large, high dimensional, problems.



Installation

Python
CVXPY can be installed using pip install cvxpy. Further instructions available here.

MATLAB
Instructions for installation are available here. Though similar, syntax between Python and
MATLAB are very different.

https://www.cvxpy.org/
http://cvxr.com/


Disciplined Convex Programming

Disciplined convex programming is a methodology for constructing convex
optimization problems proposed by Michael Grant, Stephen Boyd, and Yinyu Ye.

Disciplined convex programming imposes a set of conventions or rules, which we call
the DCP ruleset. Problems which adhere to the ruleset can be rapidly and
automatically verified as convex and converted to a solvable form.

Problems that violate the DCP ruleset are rejected, even when the problem is convex.



Example 1: Least-Squares

Minimize ∥Ax − b∥2, where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm

1 import cvxpy as cp

2 import numpy as np

3

4 m = 16

5 n = 10

6 A_mat = np.random.randn(m,n)

7 b = np.random.randn(m,1)

8

9 x = cp.Variable((n,1))

10 objective = cp.Minimize(cp.norm2(A_mat@x - b))

11 problem = cp.Problem(objective)

12 result = problem.solve()



Example 1: Least-Squares

If problem is feasible and bounded, the solved variables are stored in x.value

The result contains the optimal value for the given problem. In practical problems
this often correspond to a cost or error.

Setting problem.solve(verbose=True) will give detailed information about the solver
used, iterations taken etc.



Example 2: Bound-Constrained LS

Minimize ∥Ax − b∥2

Subject to l ⪯ x ⪯ u

1 x = cp.Variable((n,1))

2 objective = cp.Minimize(cp.norm2(A_mat@x - b))

3 constraints = [

4 l <= x,

5 x <= u,

6 ]

7 problem = cp.Problem(objective, constraints)

8 result = problem.solve()



Constraints

CVX only supports equality constraints (==) and non-strict inequalities (<=, >=).
If absolutely necessary, strict inequalities can often be addressed with normalization.

Be careful to not use the assignment operator for equality constraints (=)
To be able to verify convexity of a problem, DCP sets further limitations to constraint
definitions:

left- and right- hand sides of an equality constraint must be affine,
inequality constraints of form f (x) <= g(x), or g(x) >= f (x) are only accepted if f is
convex and g concave.

http://web.cvxr.com/cvx/doc/dcp.html#strict


Inequality Constraints

Inequality constraints (<= and >=) can be used for scalars and matrices.

If one side is scalar and the other is a matrix, constraints are interpreted
elementwise, i.e, each element of the matrix is constrained by the (same) scalar.

Inequalities can not be used if either side is complex.



Attributes

CVX does not use a set membership operator such as x ∈ R.
Instead, variables (and parameters) can be given additional properties using
attributes, for example:

x ∈ R+ can be expressed as x = cp.Variable(1, pos=True)

A ∈ Rn×n Hermitian, can be expressed as A = cp.Variable((n,n), hermitian=True)



DCP Ruleset

The DCP ruleset breaks problems down to atomic functions.

Each atomic function has a sign and curvature.

Using composition rules from convex analysis, DCP tries to propagate the curvature
and sign from atomic functions to the complete expression.

Curvature Meaning
constant f (x) independent of x

affine f (θx + (1 − θ)y) = θf (x) + (1 − θ)f (y), ∀x , y , θ ∈ [0, 1]
convex f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y), ∀x , y , θ ∈ [0, 1]

concave f (θx + (1 − θ)y) ≥ θf (x) + (1 − θ)f (y), ∀x , y , θ ∈ [0, 1]
unknown DCP analysis can not determine curvature

https://www.cvxpy.org/tutorial/functions/index.html


Curvature rules

f (expr1, expr2, . . . , expr3) is convex if f is a convex function and for each expri one of
the following conditions hold:

f is increasing in argument i and expri is convex.

f is decreasing in argument i and expri is concave.

expri is affine or constant.

Similar logic is applied to establishing concavity or affinity of a function. If a function
does not fulfill conditions for convex, concave, or affine, it is unknown.

Note
If any (sub)expression has unknown curvature, CVX can not solve the problem.



Curvature analysis example

[Source]

https://ajfriendcvxpy.readthedocs.io/en/latest/tutorial/dcp/index.html#example-2


Problem Reformulation

DCP yields unknown curvature for
√

1 + x2. However, we can represent the same
problem with other atomic functions:√

1 + x2 =
√

12 + x2 = ∥[1, x ]∥2

In CVXPY, cp.sqrt(1 + cp.square(x)) becomes cp.norm(cp.vstack(1, x), 2). We
now have a known convex function (norm) with an affine (sub)expression. Based on
the DCP ruleset this is convex.



Advanced: Semidefinite Programming

CVXPY supports Semidefinite Programming (SDP) using additional LMI notation or
attributes. Note that this feature differs from the SDP mode in MATLAB.
In order to define Positive Semidefinite (PSD) matrix, we can either:

Define a variable with the PSD attribute X = cp.Variable((n,n), PSD=True).
Introduce a PSD constraint with the special « or » operators.

X = cp.Variable((n,n), PSD=True)

constraints = [X » 0]



Demo: Thruster Problem



Problem Definition
Consider a rocket/satellite with n thrusters at pi = (pix , piy). Each thruster acts in the
direction of θi . The force of each thruster can be adjusted between 0 and 1.

Problem 1:
Find Thruster forces ui that yield given desired (total) forces and torque on the rigid body,
while minimizing fuel usage (if feasible).



Alternate Formulations

Problem 2:
Find Thruster forces ui that yield given desired forces and torque, while minimizing fuel
usage (if feasible). Each thruster consists of a pair pointing towards both θi and −θi .

Problem 3:
Find Thruster forces ui that yield given desired forces and torque, while minimizing
maximal force/torque error.



Extra: Shadow Prices in LP



Factory

A factory can manufacture two products which yield a profit of 20C for product 1 and
50C for product 2. Each product requires molding, assembly, painting, and inspection.
These steps have the following (monthly) constraints:

x1 + 3x2 ≤ 300 [molding],

x1 + x2 ≤ 300 [assembly],

5x1 + 2x2 ≤ 500 [painting],

2x1 + 2x2 ≤ 300 [inspection],

where xn is the quantity of product n being produced. Maximize total (monthly) profit
and compute the corresponding dual values. What do they describe?



Optimization problem

Maximize 20x1 + 50x2

Subject to x1 + 3x2 ≤ 300,

x1 + x2 ≤ 300,

5x1 + 2x2 ≤ 500,

2x1 + 2x2 ≤ 300,

x1, x2 ≥ 0


