Lecture 7:

Smooth Unconstrained Minimization Algorithms

- terminology
- general descent method
- line search types
- gradient method
- steepest descent method
- Newton's method

Terminology

unconstrained minimization problem

minimize
$$f(x)$$

 $f: \mathbf{R}^n \to \mathbf{R}$, smooth, convex, with $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$

minimizing sequence: $x^{(k)}$, $k \to \infty$

$$f(x^{(k)}) \to f^*$$

optimality condition

$$\nabla f(x^{\star}) = 0$$

set of nonlinear equations; usually no analytical solution

more generally, if $\nabla^2 f(x) \succeq mI$, then

$$f(x) - f^\star \le \frac{1}{2m} \|\nabla f(x)\|^2$$

 \dots yields stopping criterion (if you know m)

Examples

unconstrained quadratic minimization

$$\label{eq:minimize} \begin{aligned} & \text{minimize } x^T P x + 2 q^T x + b \\ & (P = P^T \succ 0) \end{aligned}$$

unconstrained geometric programming

minimize
$$\log \sum_{i=1}^{m} e^{a_i^T x + b_i}$$

logarithmic barrier for linear inequalities

minimize
$$-\sum_{i} \log(a_i^T x + b_i)$$

subject to $a_i^T x + b_i > 0, i = 1, ..., m$

is 'effectively' unconstrained

Descent method

$\ \ \, \mathbf{given} \ \, \mathbf{starting} \ \, \mathbf{point} \ \, x$

repeat

- 1. Compute a search direction v
- 2. Line search. Choose step size t > 0
- 3. Update. x := x + tv

until stopping criterion is satisfied

 $\text{descent method: } f(x^{(k+1)}) < f(x^{(k)})$

(if f (quasi-)convex) v must be a **descent direction**:

$$\nabla f(x^{(k)})^T v^{(k)} < 0$$

examples

- $\bullet \ v^{(k)} = -\nabla f(x^{(k)})$
- $v^{(k)} = -H^{(k)} \nabla f(x^{(k)}), H^{(k)} = H^{(k)T} \succ 0$
- $\bullet \ v^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$

Line search types

fixed step size

$$t = t_{\text{fixed}} > 0$$

exact line search

$$t = \operatorname*{argmin}_{s>0} f(x + sv)$$

backtracking line search ($0 < \beta < 1$, $0 < \alpha < 0.5$)

- starting with t = 1, $t := \beta t$
- $\bullet \text{ until } f(x+tv) \leq f(x) + t\alpha \nabla f(x)^T v$

Gradient method

given starting point \boldsymbol{x}

repeat

- 1. Compute search direction $v = -\nabla f(x)$
- 2. Line search. Choose step size t
- 3. Update. x := x + tv

until stopping criterion is satisfied

- converges with exact or bactracking line search
- can be very slow
- almost never used in practice

Quadratic example

$$\text{minimize } \frac{1}{2}(x^2 + My^2)$$

- exact line search
- \bullet start at $x^{(0)}=M$, $y^{(0)}=1$ (to simplify formulas)

iterates are then

$$x^{(k)} = M \left(\frac{M-1}{M+1} \right)^k, \quad y^{(k)} = \left(-\frac{M-1}{M+1} \right)^k,$$

- \bullet fast if M close to 1
- ullet slow, zig-zagging if $M\gg 1$ or $M\ll 1$

Numerical example: gradient method

minimize
$$c^T x - \sum\limits_{i=1}^m \log(a_i^T x + b_i)$$
 subject to $a_i^T x + b_i > 0, \quad i = 1, \dots, m$

$$m = 100, n = 50$$

gradient method with exact line search

• slow convergence; zig-zagging

Steepest descent direction

steepest descent direction for norm $\|\cdot\|_g$:

$$v = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v||_g = 1\}$$

motivation: first-order approximation of f at x:

$$f(x+tv) \simeq f(x) + t\nabla f(x)^T v$$

- \bullet Euclidean norm: $v = -\nabla f(x)/\|\nabla f(x)\|$
- quadratic norm

 \bullet ℓ^{∞} - and ℓ^{1} -norm

Steepest descent method

given starting point x repeat

- 1. Compute steepest descent direction $v = \operatorname{argmin} \{ \nabla f(x)^T v \mid ||v||_g = 1 \}$
- 2. Line search. Choose a step size t
- 3. Update. x := x + tv

until stopping criterion is satisfied

- converges with exact or backtracking line search
- can be very slow

Pure Newton method

$$x^{+} = x - \nabla^{2} f(x)^{-1} \nabla f(x)$$

interpretations: $y = x^+$

ullet minimizes 2nd order expansion of f at x:

$$f(x) + \nabla f(x)^T (y-x) + \frac{1}{2} (y-x)^T \nabla^2 f(x) (y-x)$$

• solves linearized optimality condition:

$$0 = \nabla f(x) + \nabla^2 f(x)(y - x)$$

works very well near optimum

Local convergence

assumptions

- $\bullet \nabla^2 f(x) \succeq mI$
- Hessian satisfies Lipschitz condition:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$$

(L small means f nearly quadratic)

result (see references)

$$\left\| \frac{L}{2m^2} \| \nabla f(x^+) \| \le \left(\frac{L}{2m^2} \| \nabla f(x) \| \right)^2$$

ullet $\|
abla f(x) \|$ (hence, $f(x) - f^{\star}$) decreases very rapidly if

$$\|\nabla f(x^{(0)})\| < \frac{m^2}{L}$$

(region of quadratic convergence)

ullet bound on #iterations for accuracy $f(x) - f^\star \leq \epsilon$:

$$\log_2 \log_2(\epsilon_0/\epsilon), \quad \epsilon_0 = m^3/L^2$$

• practical rule of thumb: 5-6 iterations

Global behavior

pure Newton method can diverge

Damped Newton method

given starting point x

repeat

- 1. Compute Newton direction $v = -\nabla^2 f(x)^{-1} \nabla f(x)$
- 2. Line search. Choose a step size t
- 3. Update. x := x + tv

until stopping criterion is satisfied

- globally convergent with backtracking or exact line search
- quadratic local convergence
- hence, stopping criterion not an issue (e.g., knowledge of m)

affinely invariant:

- use new coords $x = T\bar{x}$, $\det T \neq 0$
- ullet apply Newton to $g(\bar{x})=f(T\bar{x})$
- ullet then $x^{(k)} = T\bar{x}^{(k)}$
- e.g., Newton method not affected by variable scaling (cf. gradient, steepest descent)

Convergence analysis

assumptions:

- $\bullet mI \preceq \nabla^2 f(x) \preceq MI$
- $\bullet \ \|\nabla^2 f(x) \nabla^2 f(y)\| \le L \|x y\|$

results: (see references)

two phases:

1. damped Newton phase: $\|\nabla f(x)\| \ge \eta_1$:

$$f(x^+) \le f(x) - \eta_2,$$

hence

$$\# \mathrm{iterations} \leq \frac{f(x^{(0)}) - f^\star}{\eta_2}$$

2. quadratically convergent phase: $\|\nabla f(x)\| < \eta_1$

#iterations
$$\leq \log_2 \log_2(\epsilon_0/\epsilon)$$

total #iterations bounded by

$$\frac{f(x^{(0)}) - f^*}{\eta_2} + \log_2 \log_2(\epsilon_0/\epsilon)$$

 η_1 , η_2 , ϵ_0 depend on m, M, L (and α , β for backtracking)

Numerical example: Newton method

minimize
$$c^T x - \sum\limits_{i=1}^m \log(a_i^T x + b_i)$$
 subject to $a_i^T x + b_i > 0, \quad i = 1, \dots, m$

$$m = 100, n = 50$$

solid line: backtracking ($\beta = 0.5$, $\alpha = 0.2$)

dashed line: exact line search

(remember: each iter is more expensive than gradient

method)