Lecture 7:
Smooth Unconstrained Minimization Algorithms

e terminology

e general descent method
¢ line search types

e gradient method

e steepest descent method
e Newton's method



Smooth unconstrained minimization

Terminology

unconstrained minimization problem
minimize f(x)

fR" — R, smooth, convex, with dom f = R"

minimizing sequence: =%, k — o

fla®) — £

optimality condition

Vfz*)=0

set of nonlinear equations; usually no analytical solution

more generally, if V2 f(x) = mlI, then

flz) = f*<—|lVf( )|I*

.. yields stopping criterion (if you know m)



Smooth unconstrained minimization

Examples

unconstrained quadratic minimization
minimize 2! Pz + 2¢7z + b

(P = PT = 0)

unconstrained geometric programming

L mo T
minimize log > e z+bi

1=1

logarithmic barrier for linear inequalities
minimize — > log(alz + b))
7
subject to alx +b; >0, i=1,...,m

is ‘effectively’ unconstrained



Smooth unconstrained minimization

Descent method

given starting point x
repeat

1. Compute a search direction v
2. Line search. Choose step size t > ()
3. Update. v .=z + tv

until stopping criterion is satisfied

descent method: f(z**+1D) < f(2®)

(if f (quasi-)convex) v must be a descent direction:

V(¥ Ty® < 0

examples
0 ot = ¥ f(zl¥)
o k) — _H(k)vf(g;(k)), HE = gET «
o vl = — 72 () 1V ()



Smooth unconstrained minimization

Line search types

fixed step size
t = Lfixea > U

exact line search
t = argmin f(x + sv)

s>0

backtracking line search (0 < 6 <1, 0 < a < 0.5)
e starting with t =1, t := [t
o until f(z +tv) < f(z) +taVf(z)v

fz +tv)

T (AP



Smooth unconstrained minimization

Gradient method

given starting point x
repeat

1. Compute search direction v = —V f(x)
2. Line search. Choose step size ¢
3. Update. x .= x + tv

until stopping criterion is satisfied

e converges with exact or bactracking line search
e can be very slow

e almost never used in practice



Smooth unconstrained minimization

Quadratic example

1
minimize 5(392 + M)

e exact line search

o start at (9 = M, 49 =1 (to simplify formulas)

iterates are then

M — 1\ M — 1\
v M+1) Y M+1) "

T
151

101

o fast if M close to 1
e slow, zig-zagging if M > 1 or M < 1



Smooth unconstrained minimization

Numerical example: gradient method

minimize ¢

T

1=1

xr — % log(a?x + b;)

subject to alz +b; >0, i=1,...,m

m = 100, n = 50
gradient method with exact line search

k

e slow convergence; zig-zagging

step size
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Smooth unconstrained minimization

Steepest descent direction

steepest descent direction for norm || - ||,:
v = argmin{V f(z)7v | [[v], = 1}
motivation: first-order approximation of f at x:

flx+tv) = flz)+ tVf(x) v

e Euclidean norm: v = =V f(x)/||V f(x)||

e quadratic norm

—Vf(z)

e /*°- and (*-norm

—Vf(x) —Vf(x)




Smooth unconstrained minimization

Steepest descent method

10

given starting point x
repeat

1. Compute steepest descent direction
v = argmin{ V f(2)7v | |[v]l, = 1}

2. Line search. Choose a step size ¢

3. Update. x .=z + tv

until stopping criterion is satisfied

e converges with exact or backtracking line search

e can be very slow
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Smooth unconstrained minimization

Pure Newton method

vt =z - Vf(z)"'Vf(z)
interpretations: y = 27

e minimizes 2nd order expansion of f at x:

1

f(@) + V() (y —2)+ S~ )"V f(a)(y — )

e solves linearized optimality condition:

0=Vflx)+Vfl)ly - =)

2nd-order approx. of f

© 1st-orde

r approx. of f’\

works very well near optimum
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Smooth unconstrained minimization

Local convergence

assumptions
o V2f(x) = mli
e Hessian satisfies Lipschitz condition:
[V (@) = Vi (y)] < Lllz -y

(L small means f nearly quadratic)

result (see references)

19560 < (s 19 @)

o ||V f(x)| (hence, f(x) — f*) decreases very rapidly if
2

V) <

(region of quadratic convergence)

e bound on #iterations for accuracy f(x) — f* < e
log, logs(eo/€), € =m®/L?

e practical rule of thumb: 5-6 iterations



Smooth unconstrained minimization

Global behavior

13

pure Newton method can diverge

J(‘l
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Smooth unconstrained minimization

Damped Newton method

given starting point x
repeat
1. Compute Newton direction
v=-Vf(z)"'Vf(z)
2. Line search. Choose a step size t
3. Update. x =z + tv

until stopping criterion is satisfied

e globally convergent with backtracking or exact line
search

e quadratic local convergence

e hence, stopping criterion not an issue
(e.g., knowledge of m)

affinely invariant:
e use new coords x =Tz, detT" # 0
e apply Newton to g(z) = f(T'%)

e then z(F) = Tz(%)

e.g., Newton method not affected by variable scaling
(cf. gradient, steepest descent)
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Smooth unconstrained minimization

Convergence analysis

assumptions:
eml X Vf(x) X MI
o [V f(z) = V2 f(y)| < Lllz — o

results: (see references)

two phases:

1. damped Newton phase: ||V f(z)|| > n:
fl@") < f(z) — e,

hence
f) — f*
12

#iterations <

2. quadratically convergent phase: ||V f(z)]| < m

#iterations < log, logs(€p/€)

total #iterations bounded by

f) = f*
2

N1, N2, €o depend on m, M, L (and «, (3 for
backtracking)

+ log, logy(€p/€)
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Smooth unconstrained minimization

Numerical example: Newton method

minimize ¢’z — 3 log(a! x + b;)
i=1
subjectto alx +b; >0, i=1,...,m

m = 100, n = 50

[N
T

step size

0.5r

I I
0 5 10 15

solid line: backtracking (G = 0.5, a = 0.2)

dashed line: exact line search

(remember: each iter is more expensive than gradient
method)



