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Quiz 1

Question 1 Question 4

What does the standard deviation of a sample measure? Select the correct statement:

[J a. A statistically significant effect can correspond to a very small effect size
[J a. Arange of values where the true mean of the population probably resides.

[J b. When an effect is statistically significant, it always correspond to an important effect size
[J b. The spread of the data around the mean.

Question 2

What does a confidence interval indicate?

[J a. Arange of values where the true mean of the population probably resides.

[J b. The spread of the data around the mean.

Question 3

What is a t-test?

[J a. It is a statistical test to compare the standard deviations of two populations from their samples.

[J b. Itis a statistical test to compare the means of two populations from their samples.



Statistical significance # Effect size
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Using Effect Size—or Why the P Value Is Not Enough

Gail M. Sullivan, MD, MPH and Richard Feinn, PhD
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Why Isn't the P Value Enough? Goto: »

Statistical significance is the probability that the observed difference between two groups is due to chance.
If the P value is larger than the alpha level chosen (eg, .05), any observed difference is assumed to be
explained by sampling variability. With a sufficiently large sample, a statistical test will almost always
demonstrate a significant difference, unless there is no effect whatsoever, that is, when the effect size is
exactly zero; yet very small differences, even if significant, are often meaningless. Thus, reporting only the
significant P value for an analysis is not adequate for readers to fully understand the results.

For example, if a sample size is 10 000, a significant P value is likely to be found even when the difference
in outcomes between groups is negligible and may not justify an expensive or time-consuming intervention
over another. The level of significance by itself does not predict effect size. Unlike significance tests, effect
size is independent of sample size. Statistical significance, on the other hand, depends upon both sample
size and effect size. For this reason, P values are considered to be confounded because of their dependence
on sample size. Sometimes a statistically significant result means only that a huge sample size was used.?

A commonly cited example of this problem is the Physicians Health Study of aspirin to prevent myocardial
infarction (MI).% In more than 22 000 subjects over an average of 5 years, aspirin was associated with a
reduction in MI (although not in overall cardiovascular mortality) that was highly statistically significant: P
< .00001. The study was terminated early due to the conclusive evidence, and aspirin was recommended
for general prevention. However, the effect size was very small: a risk difference of 0.77% with 7 = .001—
an extremely small effect size. As a result of that study, many people were advised to take aspirin who
would not experience benefit yet were also at risk for adverse effects. Further studies found even smaller
effects, and the recommendation to use aspirin has since been modified.



Outline of the course

1. Mean, Standard Deviation, Standard Error, Confidence Intervals, T-
test

2. Fourier Transform, Wavelet Transforms, Spectrograms, High-pass,
Low-pass filters

Principal Component Analysis / Singular Value Decomposition
Linear Regression / Logistic Regression
Clustering Methods

Non-linear Methods: Independant Component Analysis, t-Stochastic
Neighbour Embedding, Random Forests, Deep Networks

7. Invited lecture from the biomedical industry
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Spend 5 minutes explaining to your neighbor

* What is the Fourier transform?
(switch roles)
e What can it be useful for?



Visualization of the Fourier Transform

The Fourier transform expresses a signal into a sum of sine and cosine functions.

source: https://en.wikipedia.org/wiki/Fourier transform



https://en.wikipedia.org/wiki/Fourier_transform

Fourier Transform : definition

It is a change of basis, which re-expresses an input sequence X into a
new basis of sine and cosine functions (i.e. frequency domain):
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where X'j is the k' Fourier component k isa frequency index

Ly, isthe nt"element of the sequence

N s the total size of the input sequence



Visualization of the Fourier Transform

Expressing the signal as complex sinusoids has the benefit of compactly
representing all necessary information about each frequency, namely the
amplitude and phase of the signal for this frequency

21k 27k
fnk = cos(%n) — 1. sin(%n)

source: https://en.wikipedia.org/wiki/Fourier transform



https://en.wikipedia.org/wiki/Fourier_transform

Discrete Fourier Transform (DFT) : definition

It is a change of basis, which re-expresses an input sequence X into a

new basis of sine and cosine functions (i.e. frequency domain):
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where X s the Fourier representation
Jisthe Fourier transform

X isthe input sequence

The real part (cosine wave) is denoted by a solid line, and the imaginary part (sine wave) by a dashed line.



Fast Fourier transform: definition

Fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier
transform (DFT) of a sequence very efficiently (complexity N.log(N) instead of N2, where
N is the size of the input sequence), by taking advantage of the very specific structure of
the DFT transform:
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source: https://en.wikipedia.org/wiki/Fast_Fourier_transform



Fourier Spectrum: definition

The Fourier spectrum of a signal or time series describes how the
power of this signal is distributed over frequency. It is defined as:

— 2
S (k) — |CE'k | where S(k) is the power spectrum at frequency k

L. isthe Fourier component at frequency k

One Channel of EEG Data Spectrum

M

H‘r{w

b O
.....

N = \ e I‘I,h"d’

v I'.’y| ’M

Voltage
Loz power (dB)

500 1000 1500 2000 2500 3000 3500 4000 4500 1 10 100 512
Frequency (Hz)

Samples



Low-pass, high-pass and band-pass filters

* A low-pass filter is a filter that passes signals with a frequency lower
than a selected cutoff frequency and attenuates signals with
frequencies higher than the cutoff frequency.

* A high-pass filter is a filter that passes signals with a frequency higher
than a certain cutoff frequency and attenuates signals with
frequencies lower than the cutoff frequency.

* A band-pass filter is the combination of a high-pass and a low-pass
filter




Low-pass, high-pass and band-pass filters
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Figure 3: original image

Figure 4: result of Gaussian Figure 5: Gaussian high pass filter
low pass filter



Low-pass filtering

Low-pass filtering consists in getting rid of the high-frequency components:
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High-pass filtering

High-pass filtering consists in getting rid of the low frequency components:
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Ringing artifacts and how to avoid them

Ringing artifacts are oscillations in the signal that appear as a result of
sharp low-pass filtering:

Image showing ringing artifacts. 3 &
levels on each side of transition:

' . o ) = overshoot, first ring, and (faint) second
Same image without ringing artifacts. ring.



Ringing artifacts and how to avoid them

A sharp low-pass filtering window in frequency domain artificially
creates oscillations in the temporal domain because the Fourier
transform of a rectangular window is the ‘sinc’ function:

low-pass filtering window Fourier transform of this low-pass filtering window
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Ringing artifacts and how to avoid them

To avoid ringing artifacts, one can smoothly attenuate high-frequency

components, a process called ‘windowing’. Many possible windows
exist:

There are many possible low-pass filter types or configurations. The most commonly used are Butterworth, Chebyshev, and Bessel filters.

The response of these filters to a pulse in the time domain is useful in understanding the appropriate filter type selection (Figure 4).
The frequency responses of these filters differ, and they offer some key differentiators depending on the application (Figure 3).

Low Pass Filter Responses

o o
10
30
Butterworth
Figure 4: Filter response to an input pulse (upper left) shows the differences in time domain pulse response of the
Chebyshev (upper right), Butterworth (lower left), and Bessel (lower right) filter types. (Image source: Digi-Key
Electronics)
50
0 100 1000 10000 . i . . . . . i
Preatiency ) The Bessel filter’s linear phase response with frequency passes the pulse with minimal distortion, but it doesn’t have the amplitude flatness
of the Butterworth filter or the sharp cutoff of the Chebyshev filters. The type of filter selected depends on the application:
e Butterworth Bemel o Chebyshey

« The Butterworth filter should be chosen if amplitude accuracy is the paramount concern
Figure 3: A comparison of Butterworth (gray), Chebyshev (blue), and Bessel (orange) ﬁlfer{frequenq' responses. « The Chebyshev filter would be the filter of choice if the desired sampling rate is close to the signal bandwidth
The filter types differ in passband flatness, phase delay, and slope of the transition region. (Image source: Digi-Key . P e N
Electronics) « The Bessel filter is the best choice if pulse fidelity is the primary concern



Wavelet transform: definitions

* A wavelet is a wave-like oscillation with an amplitude that begins at
zero, increases or decreases, and then returns to zero one or more
times.

P=120 ~ =



Wavelet transform: definitions

* A wavelet is a wave-like oscillation with an amplitude that begins at
zero, increases or decreases, and then returns to zero one or more
times.

* A wavelet transform is a projection of the signal onto a family of
wavelets of increasing frequency.

* A wavelet transform is often used to compute spectrograms (also
called scalograms), which are visual representation of the spectrum

of frequencies of a signal as it varies with time.
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Example: Spectrogram for syllable detection in the songbird
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Fukushima & Margoliash 2014



Case study 1: EEG recordings

EEG Recording
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Figure 1.
EEG recording setup: (a) a wireless device Emotiv Epoch mounted on a subject, transmitting EEG signal to a
computer. (b) Electrode positions as 10-20 system, source: https://www.emotiv.com/.



Spectrum of an EEG recording

One Channel of EEG Data
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Figure 3. Example of the signal and corresponding spectra for 4.5 seconds of EEG data for one electrode.
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the right panel, in logarithmic scale.
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Artifacts in EEG recordings
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Figure 4.

Common type of artefacts in EEG. Corresponding artefacts are circled in the figure.

Artifact: an electroencephalographic
wave that arises from sources other
than the brain



EEG spectrograms
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Figure 7.

Scalogram and spectrogram of a segment of signal channel EEG signal with six wavelet functions and STFT.

Figure obtained using spkit python library - https://spkit.github.iohttps://spkit.github.io



Denoising EEG using the spectrogram
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Band-pass analysis of EEG recordings
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Figure 2.
The signal channel raw EEG signal and corresponding frequency bands: Delta (0.1 — 4 Hz), theta (4 — 8 Hz),
alpha (8 — 14 Hz), Beta (14 — 30 Hz), gamma (30 — 63 Hz).



Case study 2: Spectrogram for data analysis

Coscalogram of ECG and Arterial Blood Pressure.
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Relation between electrocardiographs (ECG)
and blood pressure (BP) measurements over the
same time period.

In the plot presented, one can see ECG and BP
signals, along with their scalograms. It is visible
that two (framed) events, visible in the
scalogram of ECG, have corresponding reaction
in BP scalogram, but with some visible time
delay.



Next lecture

* Principal Component Analysis
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Supplementary material (can be ignored)



Nyquist=Shannon sampling theorem

* The sampling theorem essentially says that a signal has to be sampled
at least with twice the maximum frequency of the original signal, in
order to avoid loosing information by confusing some frequencies
with others.



DFT MATRIX

DFT matrix

From Wikipedia, the free encyclopedia

In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication.

Contents [hide]

1 Definition
2 Examples

2.1 Two-point

2.2 Four-point

2.3 Eight-point
3 Unitary transform
4 Other properties
5 A limiting case: The Fourier operator
6 See also
7 References
8 External links

Definition [edit]
An N-point DFT is expressed as the multiplication X = Wz, where z is the original input signal, W is the N-by-N square DFT matrix, and X is the DFT of the signal.
wk

The transformation matrix W can be defined as W = <—) , or equivalently:
§k=0,...,N—1

VN

1 1 1 1 e 1
1 w w? o® e w1
1 1 W2 wh Wb w2(N-1)
W= _\/N 1 W Wb W0 WIN-1) s
1 W1 Q2N-1)  (B3(N-1) .. (N-1)(N-1)
where w = e 2™/V s a primitive Ath root of unity in which i2 = —1. We can avoid writing large exponents for w using the fact that for any exponent  we have the identity w” = w” mod N This is the Vandermonde matrix for the

roots of unity, up to the normalization factor. Note that the normalization factor in front of the sum ( 1/+/NN ) and the sign of the exponent in w are merely conventions, and differ in some treatments. All of the following discussion applies
regardless of the convention, with at most minor adjustments. The only important thing is that the forward and inverse transforms have opposite-sign exponents, and that the product of their normalization factors be 1/N. However, the
1/\/N choice here makes the resulting DFT matrix unitary, which is convenient in many circumstances.



DFT MATRIX

The following image depicts the DFT as a matrix multiplication, with elements of the matrix depicted by samples of complex exponentials:

xo] [t — 1 T xior
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e B | S x[3]
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X[7] e S e T T X[7]

The real part (cosine wave) is denoted by a solid line, and the imaginary part (sine wave) by a dashed line.

The top row is all ones (scaled by 1 / \/g for unitarity), so it "measures" the DC component in the input signal. The next row is eight samples of negative one cycle of a complex exponential, i.e., a signal with a fractional frequency of —-1/8,
so it "measures" how much "strength" there is at fractional frequency +1/8 in the signal. Recall that a matched filter compares the signal with a time reversed version of whatever we're looking for, so when we're looking for fracfreq. 1/8
we compare with fracfreq. —1/8 so that is why this row is a negative frequency. The next row is negative two cycles of a complex exponential, sampled in eight places, so it has a fractional frequency of —1/4, and thus "measures" the
extent to which the signal has a fractional frequency of +1/4.



A word about aliasing and windowing

4

Performance Comparison of Data Windows

In this chapter, we compute several parameters of a window that are useful
in choosing a suitable window for particular applications, such as power
spectral estimation via discrete Fourier transform (DFT) and the design of
FIR digital filters. A comprehensive comparison of the windows that were
introduced in Chapter 3 is made based on the computed parameters. All
the parameters listed are computed using the properties of windows in the
continuous-time-domain.

The leakage that occurs in spectral estimation (via DFT) due to the promi-
nent side lobes of the spectral window obviously degrades the accuracy of
the results. Windows are weighting functions applied to the finite observa-
tion data to reduce the spectral leakage. There are four basic factors that need
to be considered while choosing a window: (a) resolution or bandwidth, (b)
stability, (c) leakage, and (d) smoothness. We shall now examine each of them
in detail.

(a) Resolution refers to the ability of a spectrum estimate to represent fine
structures in the frequency properties of the data, such as narrow peaks in
the spectrum. Owing to the averaging involved in computing a spectrum
estimate, a narrow peak in the periodogram is spread out into a broader
peak. The width is roughly an image of the spectral window used in the
estimate. Note that the width of the suitably defined spectral window is the
bandwidth of the estimate. If the spectrum of a time series consists of two
narrow peaks that are closer together than the bandwidth of the estimate
used, we find that the two narrow peaks overlap, resulting in a single peak
(which is broader). Thus, the estimate fails to resolve two narrow peaks that
occur in close proximity to each other in the true spectrum.

(b) Stability of a spectrum estimate refers to the extent to which the esti-
mates computed from different segments of a series concur, or the extent to
which irrelevant fine structures in the periodogram are eliminated. Actually,
resolution and stability are conflicting requirements since a high stabil-
ity requires averaging over many periodograms, whereas this results in a
reduced resolution.

(c) As discussed in one of the earlier chapters, leakage occurs because of the
side lobes in the spectral window. This could be reduced by applying appro-
priate window functions. The smoothness of a spectrum is a less tangible
property that would add a further conflict in requirements.
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Discrete-Time Windows and Their Figures of Merit

(a)
fln]

dlk]

(b)

F(e/?)

147

D(e/®)

FIGURE 5.2

Interplay between various window functions. (a) Data window. (b) Frequency window. (c) Lag

window. (d) Spectral window.



Spectrogram vs Scalogram

* A spectrogram is a visual representation of the spectrum of
frequencies of a signal as it varies with time.

* A spectrogram can be generated by a bank of band-pass filters, by
Fourier transform or by a wavelet transform (in which case it is also
known as a scaleogram or scalogram).l2!
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Spectrogram vs Scalogram

Scalogram Computation in Signal Analyzer 22022k

The scalogram is the absolute value of the continuous wavelet transform (CWT) of a signal, plotted as a function of time and frequency. The scalogram can be more useful than the spectrogram for analyzing real-world signals with
features occurring at different scales — for example, signals with slowly varying events punctuated by abrupt transients. Use the scalogram when you want better time localization for short-duration, high-frequency events, and better
frequency localization for low-frequency, longer-duration events.

n Note

You need a Wavelet Toolbox™ license to use the scalogram view.

The spectrogram is obtained by windowing the input signal with a window of constant length (duration) that is shifted in time and frequency. (See Spectrogram Computation in Signal Analyzer for more information.) The window used in the
spectrogram is even, real-valued, and does not oscillate. Because the spectrogram uses a constant window, the time-frequency resolution of the spectrogram is fixed.

By contrast, the CWT is obtained by windowing the signal with a wavelet that is scaled and shifted in time. The wavelet oscillates and can be complex-valued. The scaling and shifting operations are applied to a prototype wavelet. The
scaling used in the CWT both shrinks and stretches the prototype wavelet. Shrinking the prototype wavelet yields short duration, high-frequency wavelets that are good at detecting transient events. Stretching the prototype wavelet yields
long duration, low-frequency wavelets which are good at isolating long-duration, low frequency events.

To compute the scalogram, Signal Analyzer performs these steps:
1. If the signal has more than 1 million samples, divide the signal into overlapping segments.
2. Compute the CWT of each segment to get its scalogram.
3. Display the scalogram segment by segment.

As implemented, the CWT uses L" normalization. Therefore, the amplitudes of the oscillatory components in a signal agree with the amplitudes of the corresponding wavelet coefficients.



Spectrogram vs Scalogram
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Figure. 4 Comparison of the spectrogram, wavelet scalogram and Hilbert spectrum of a same time series. Top
Row: Original signal. Second row: Short time Fourier Transform spectrogram. Third row: Wavelet Scalogram,
using a Morlet mother wavelet.



