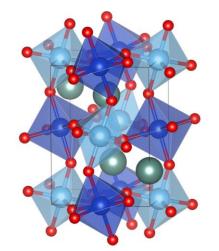
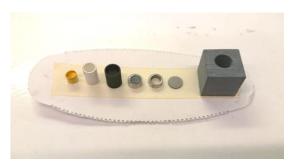
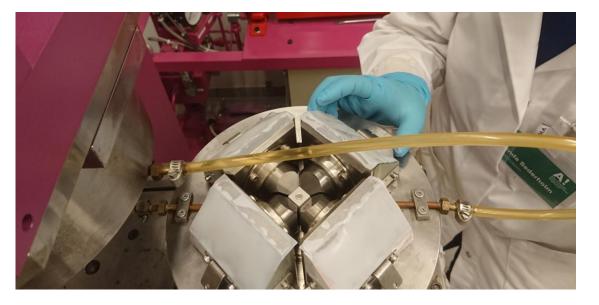
Crystal field theory

Chemistry of the elements Lecture 6


Linda Sederholm linda.sederholm@aalto.fi


18.9.2023


Who am I?

- Doctoral researcher
- High-pressure synthesis
- Perovskites
- Magnetism and superconductivity
- Welcome to ask
 questions via e-mail!

LECTURE SCHEDULE

Mon (Ke3) 12.15 - 14.00 Wed (Ke2) 10.15 - 12.00 Fri (Ke5) 10.15 - 12.00

		Date	Topic Topic (Res) 10.15 – 12.00					
1.	Wed	06.09.	Course Introduction & Short Review on Elements & Periodic Table					
2.	Fri	08.09.	Short Survey of Main Group Elements					
3.	Mon	11.09.	Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)					
4.	Wed	13.09.	Transition Metals: General Aspects & Pigments					
5.	Fri	15.09.	Redox Chemistry					
6.	Mon	18.09.	Crystal Field Theory (Linda Sederholm)					
7.	Wed	20.09.	V, Nb, Ta & Perovskites & Metal Complexes & MOFs & MLD					
8.	Mon	25.09.	Cr, Mo, W & 2D materials & Mxenes & Layer-Engineering					
9.	Wed	27.09.	Mn, Fe, Co, Ni, Cu					
10.	Fri	29.09.	Cu & Magnetism & Superconductivity					
11.	Mon	02.10.	Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)					
12.	Wed	04.10.	Lanthanoids + Actinoids & Luminescence					
13.	Fri	06.10.	Resources of Elements & Rare/Critical Elements & Element Substitutions					
14.	Fri	13.10.	Inorganic Materials Chemistry Research					

EXAM: Tuesday Oct. 17, 9:00-12:00 in Ke2

Contents

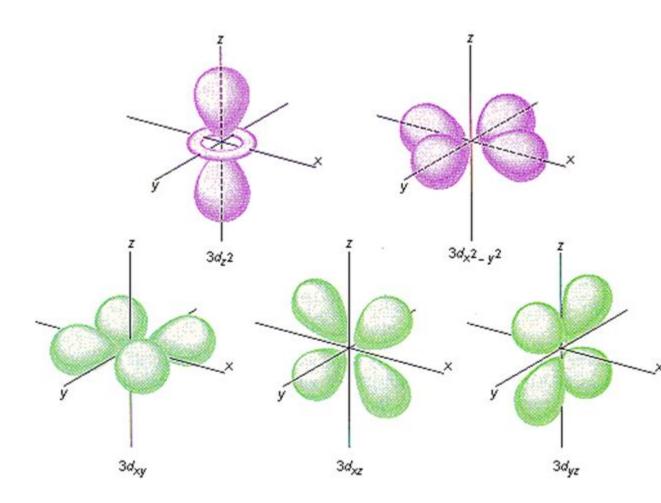
- Spatial distribution of *d*-orbitals
- Octahedral and tetrahedral environment
- Orbital electron occupation: effect on energy
- Visible and measurable effects

QUESTIONS: Lecture 6

- In octahedral crystal field, transition metal cations with the electron configurations of d⁴, d⁵, d⁶ and d⁷ have the choice of showing two different spin states, high-spin state or low-spin state. Give the electron configurations for which the same applies in tetrahedral crystal field.
- How many unpaired electrons do the following ions have in high-spin state in
 (a) octahedral, and (b) tetrahedral crystal fields: Cr³⁺, Mn²⁺, Fe²⁺ and Co⁺²?
- For which of the following ions (assume high-spin) would you expect to see (strong) Jahn-Teller distortion: Cr³⁺, Mn³⁺, Fe³⁺, Co³⁺, Cu²⁺. Explain why!

Name your file Exe-6-Familyname; Return by noon tomorrow into MyCourses drop-box

Crystal (ligand) field theory

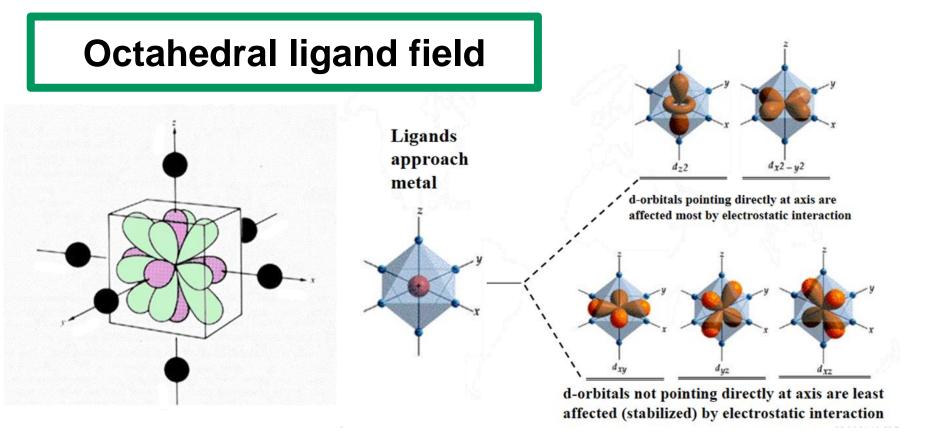

- Electron configuration of n-period transition metal (T): ns² (n-1)d^x
- For a free atom T, all d-orbitals are degenerate (= have the same energy)
- For T surrounded by neighbours (crystal, molecule or solution), the ns² electrons and possibly also a portion of the d-electrons (y) participate in the formation of the chemical bond

 \rightarrow T^{(2+y)+}: d^(x-y)

- Portion of d-electrons (x-y) remain non-bonded
- These remaining d-electrons are the source of exciting properties

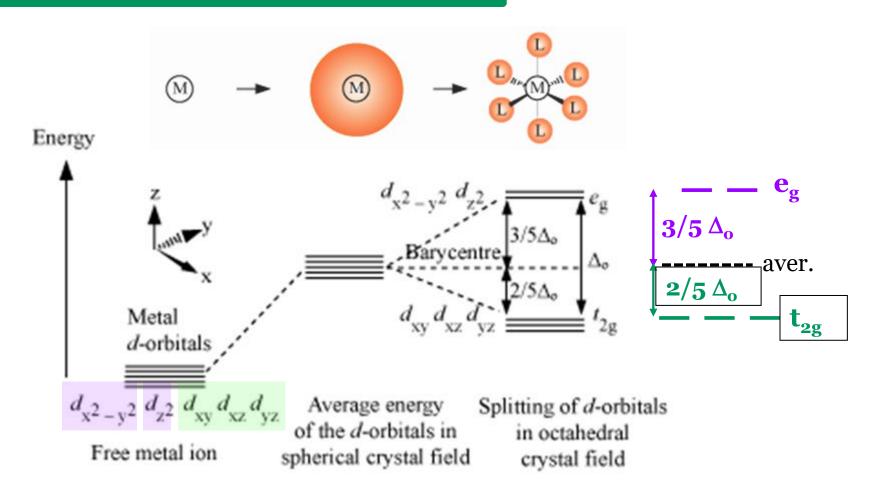
Geometry of *d*-orbitals

In an isolated atom the different *d*-orbitals of the same shell all have the same energy (but different shapes & orientations)

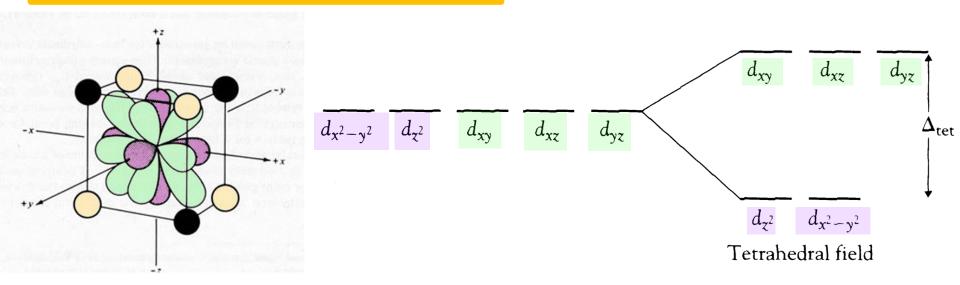

⁼ degenerate states

Bonded T-atom

- Each T atom (cation) likes simultaneously to:
 - get the nearest-neighbour anions (e.g. O²⁻) as close as possible (such that the bond can form)
 - 2. keep the non-bonded d-electrons away from the nearest-neighbour anions

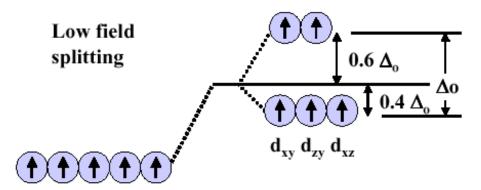

(to minimize electron-anion repulsion)

- \rightarrow this repulsion determines the orientation of the d-orbitals related to the nearestneighbour anions
- All the five d-orbitals feel the repulsion -> energy increased compared to the energy level in free T atom
- d-orbitals that are closest to the nearest-neighbour anions feel the strongest repulsion and so have the highest energy, while those that are farther have a lower energy
- d-orbitals have different shapes and spatial orientations
 - \rightarrow energies of the orbitals split (Δ) when the T cation is surrounded by anions
 - (i.e. degeneration of the d orbitals disappears)



- three d orbitals $(d_{xy}, d_{yz} and d_{zx})$ orient towards the empty spaces between the anions
 - \rightarrow lower energy (2/5 \triangle o) t_{2g} orbitals
- two d-orbitals (d_{z²} and d_{x²-y²}) orient towards the anions
 - \rightarrow higher energy (3/5 \triangle o) e_g orbitals

Octahedral ligand field



Tetrahedral ligand field

- 4 anions/ligands around transition metal T cation
- compared to octahedral case, splitting is smaller:
 - typically Δ_{tet} = 4/9 Δ_{oct} for the same metal/anion pair

Low and high field splitting

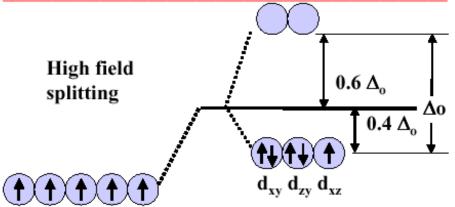


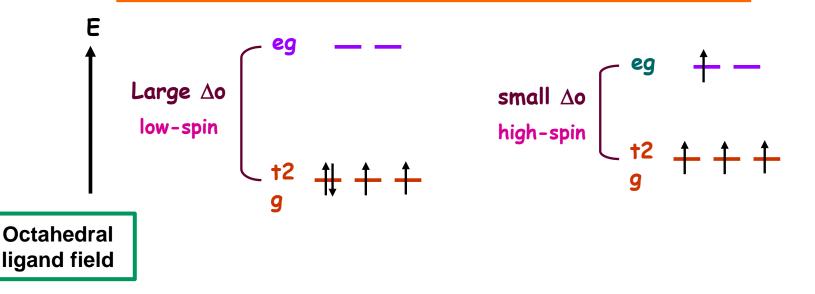
Figure 5. The two cases of crystal field splitting for the octahedral geometry.

Geometric distribution of surrounding atoms changes the orbital energies

 \rightarrow Splitting of d-orbital energies

Also f-orbital energies can split.

Electron distribution

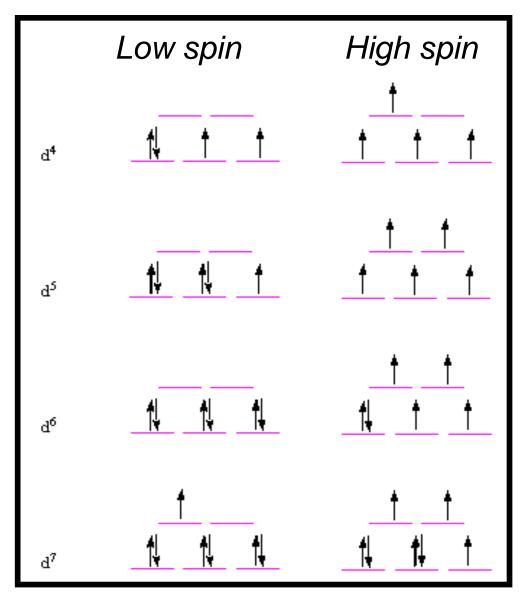

How do the d-electrons occupy split orbitals?

Two contadictory goals:

(1) Minimum energy \rightarrow low spin (if large Δ)

(2) Hund's rule (avoid electron pairs) \rightarrow high spin (if small Δ)

As $\Delta_{tet} = 4/9 \Delta_{oct}$, tetrahedral case almost always high-spin



Spin state

Let's consider the OCTAHEDRAL case

(in your lecture exercise you will consider the tetrahedral case)

Colours of d-block metal ions

- partly filled *d*-orbitals
- electrons can hop between *d*-orbitals
- energy needed for the transfer is small
- corresponds to visible light wavelengths
- ions absorb certain wavelengths within the visible light spectrum
- if an ion absorbs certain colour (e.g. red), the transmitted or reflected light contains relatively more other colours (blue and green)

 $[Fe(H_2O)_6]^{3+} [Ni(H_2O)_6]^{2+} [Zn(H_2O)_6]^{2+}$ $[Co(H_2O)_6]^{2+} [Cu(H_2O)_6]^{2+}$

 \rightarrow the ion looks coloured (bluish green)

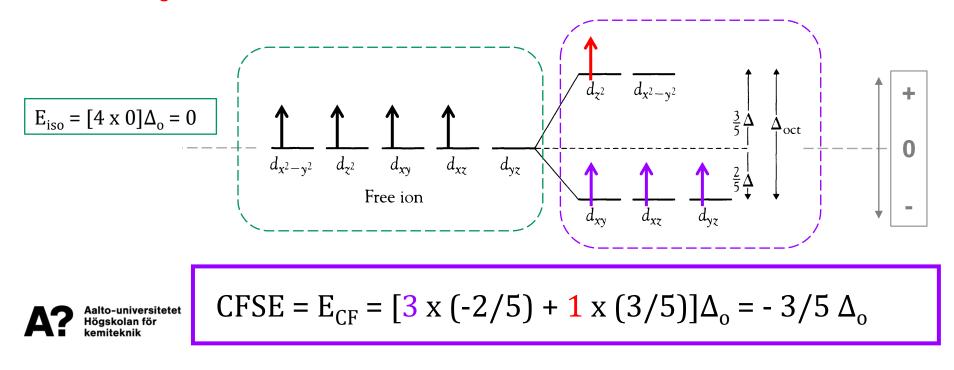
- ions with empty or full orbitals (d⁰ and d¹⁰) are colourless
- ions with half-filled orbitals (*d*⁵) are colourless or faintly coloured

CFSE: Crystal Field Stabilization Energy

Crystal field stabilization energy

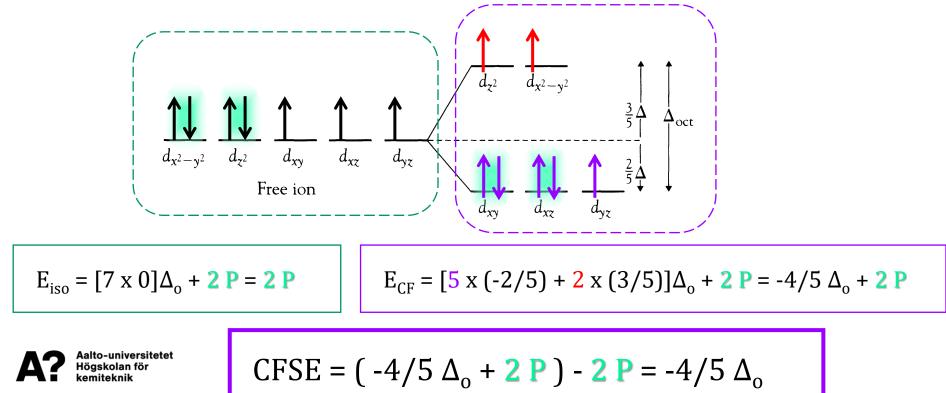
 How the electron configuration in the split field compares to the non-split field

$$CFSE = \Delta E = E_{crystal field} - E_{isotropic field}$$


- What contributes to the energy change:
 - Geometry
 - d-shell occupation
 - Spin pairing
 - Ligand character

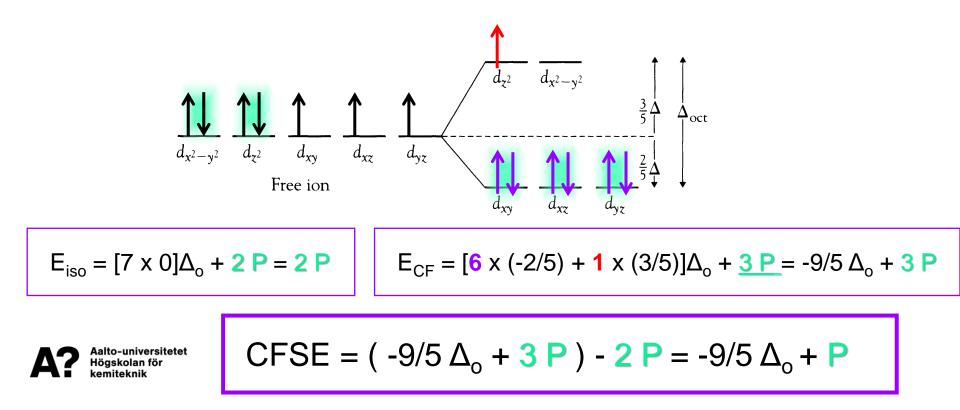
Calculation example 1

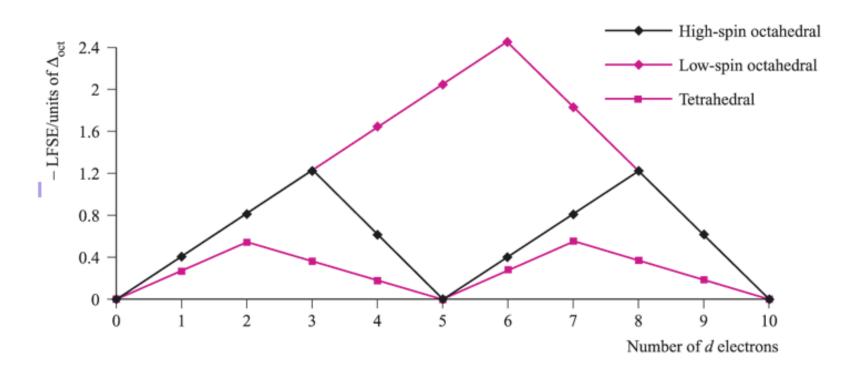
Octahedral crystal field


- each t_{2g} electron stabilizes (relatively) the compound
- each eg electron destabilizes (relatively) the compound

Calculation example 2: high spin

Octahedral crystal field

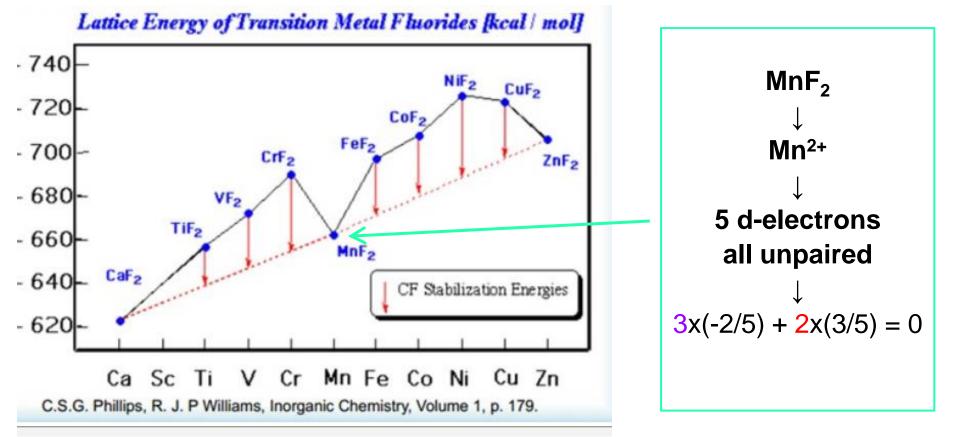

Spin pairing energy to consider! Pairing energy is P for each pair


Calculation example 2: low spin

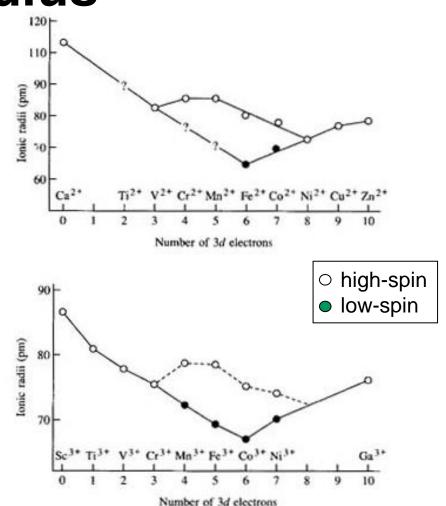
Octahedral crystal field

Spin pairing energy to consider! Pairing energy is P for each pair

General trend of CFSE



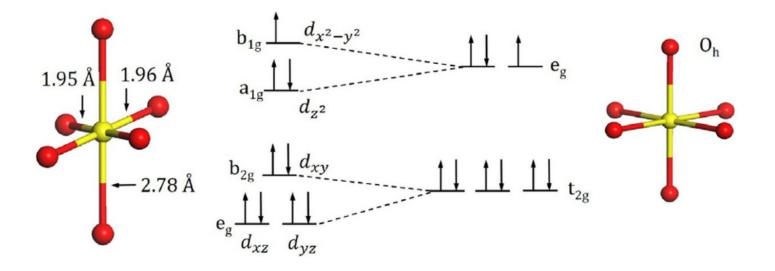
similarities with other thermodynamic energy trends - more info:


https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites %28Inorganic_Chemistry%29/Crystal_Field_Theory/Octahedral_vs._Tetrahedral_Geometries

Transition metal fluorides

CFSE and ionic radius

- FOR EXAMPLE: 3d metals in octahedral coordination
- At a fixed oxidation state, ionic radius decreases from left to right
- HOWEVER: each electron in e_g orbital increases the ionic radii
- Ionic radius depends on spin state !

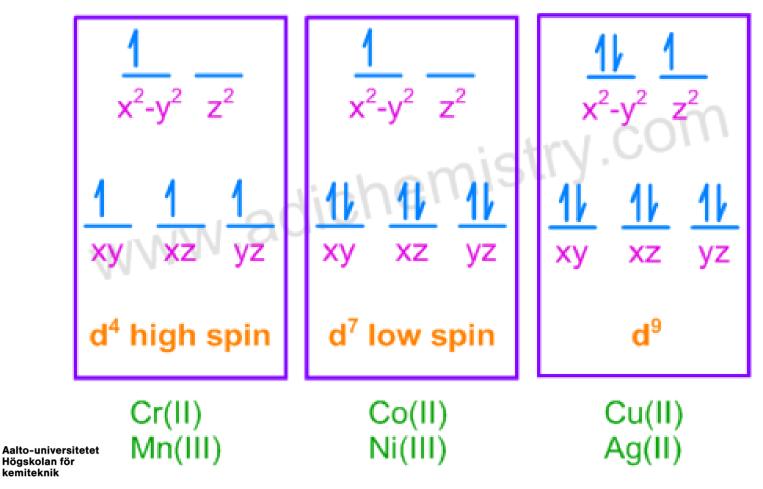

Asymmetric ligand field

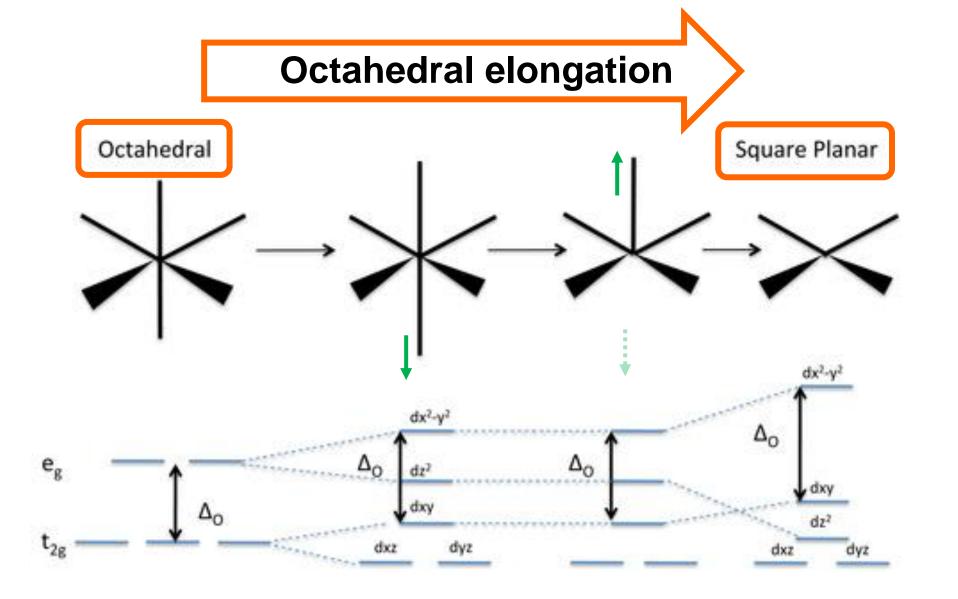
Jahn-Teller distortion

Distorted

Regular

Aalto-universitetet Högskolan för kemiteknik We come back to this when we discuss high-temperature superconducting copper oxides later in this course


Jahn-Teller distortion


- 1937: Hermann Arthur Jahn & Edward Teller
- Important in explaining: spectroscopy, stereochemistry, crystal chemistry, solid-state physics and materials science
- All is explained by the repulsions between ligands/anions and electrons at outermost orbitals
- Crystal field effect: ligands raise the (closer) orbital energy
- Jahn-Teller effect: electrons at the higher-energy orbital push the ligand/anion farther
- JT effect is most visible in octahedral environment when there is different electron occupancies at the two eg orbitals (as the ligands/anions come closest to these orbitals)

 \rightarrow Distortion (typically elongation) of the octahedron

Fe((11)	Mn(II)		Co(II)	
Low Spin	High Spin	Low Spin	High Spin	Low Spin	High Spin
T _{2g} No distortion	Eg T2g Weak distortion	Eg	T ₂ T ₂ No distortion	Eg T2g t t t	E _g
Fe(III)		Mn(III)		Co(111)	
Low Spin	High Spin	Low Spin	High Spin	Low Spin	High Spin
E_g T_{z_g} Weak distortion	T _{2g}	Eg	T _{2g}	E _g T ₂ No distortion	Eg + + + + + + + + + + + + + + + + + + +

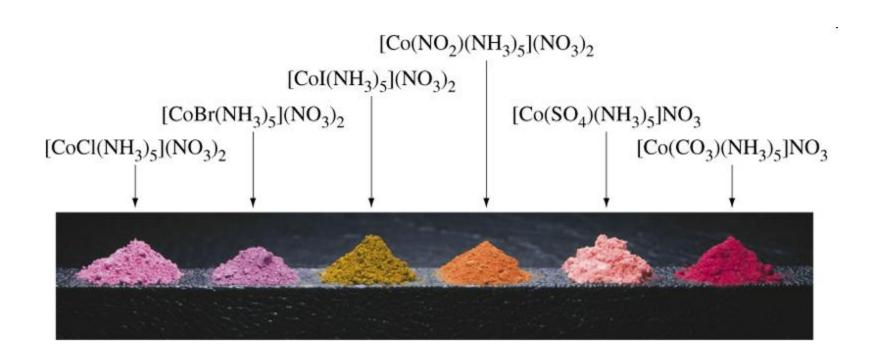
Significant J-T ions

Magnitude of splitting & splitting effects

SPECTROCHEMICAL SERIES

- Empirically found order for ligands/anions
- Ligands in the order of the magnitude of splitting Δ they produce
- Below is just part of the series

 $CO > CN^{-} > NO^{2-} >> O^{2-} >> H_2O > OH^{-} > F^{-} > N^{3-} > NO^{3-} > CI^{-} > SCN^{-} > S^{2-} > Br^{-} > I^{-}$


 π acceptors \leftarrow π donors

EXAMPLE:For $O^{2-}: \Delta$ is still relatively small \rightarrow high-spin configurations common in oxide materials

EXAMPLE: Fe²⁺: d⁶

- $[Fe(H_2O)_6]^{2+}$: high-spin \rightarrow paramagnetic
- $[Fe(CN)_6]^4$: low-spin \rightarrow diamagnetic

Ligand change \rightarrow colour change

Magnitude of the splitting energy depends also on:

(1) Transition metal T itself

- 50% larger for 4d metals than for 3d metals
- 25% larger for 5d metals than for 4d metals
 → 4d and 5d metals almost always: low-spin

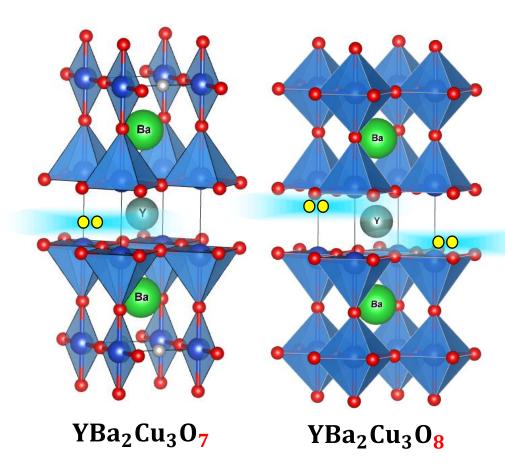
(2) Oxidation state of T


- With increasing oxidation state of T
 - \rightarrow anions become closer
 - \rightarrow larger repulsion between d electrons and anions
 - \rightarrow larger Δ
- 3d metals: when $T^{2+} \rightarrow T^{3+}$, Δ is doubled

(3) Number of anions/ligands

- The more ligands the larger Δ : $\Delta_{tet} \approx 4/9 \, x \, \Delta_{oct}$

CFT and magnetism


- Perovskite: magnetic T-ion in octahedral coordination
- Magnetic interaction depends on orbital connections
- Bonding angle influences orbital overlap geometrically

CFT and superconductivity

- Perovskite cousin
- Copper in different coordination environments
- Orbital occupation of copper is key to the formation of Cooper pairs
 - \rightarrow superconduction

Extra material...

Quantum origin of orbitals

- Solving the Hamiltonian of quantum physics
- ...leads to the so-called Legendre polynomials
- Hamiltonian is split into sub-wavefunctions by quantum numbers I, m, s
 - → orbital identificators
- When atoms form a bond, the wavefunctions of the atom combine into a new wavefunction → the atomic orbitals are replaced by bond orbitals

The solutions to Legendre equation

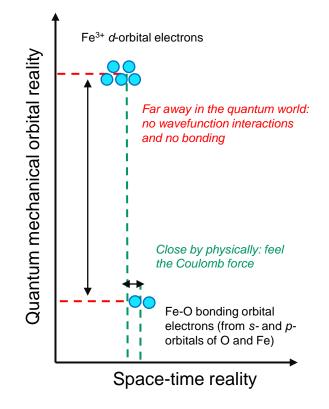
$$\begin{pmatrix} 1-x^2 \end{pmatrix} \frac{d^2 P(x)}{dx^2} - 2x \frac{dP(x)}{dx} + \begin{bmatrix} l(l+1) - \frac{m^2}{1-x^2} \end{bmatrix} P(x) = 0$$

$$\frac{l=0}{m=0} \quad l=1 \qquad l=2 \qquad l=3$$

$$\frac{m=0}{m=\pm 1} \quad P_1^0 = \cos\theta \qquad P_2^0 = \frac{1}{2} (3\cos^2\theta - 1) \qquad P_3^0 = \frac{1}{2} (5\cos^3\theta - 3\cos\theta)$$

$$\frac{m=\pm 1}{m=\pm 2} \qquad P_1^1 = \sin\theta \qquad P_2^1 = 3\cos\theta\sin\theta \qquad P_3^1 = \frac{3}{2} (5\cos^3\theta - 1)\sin\theta$$

$$\frac{m=\pm 2}{m=\pm 3} \qquad P_2^2 = 3\sin^2\theta \qquad P_3^2 = 15\cos\theta\sin^2\theta$$


$$\frac{m=1}{3} = \frac{1}{3} + \frac{1}{3} +$$

Repulsion but no bonding?

An excellent after-class question from last year:

How can the d-electrons avoid bonding with those same electrons that are 'pushing' on them in the metal-ligand bond?

- The electrons in an orbital have both particle-properties and wavefunction (orbital) properties
- Particle-properties include electric charge and Coulomb repulsion: spatial positions matter
 - The d-orbitals that are in the same geometrical space as the bond to the ligand, will feel the bonding electrons' charge
- Orbital properties concern the electrons' quantum mechanical identity, for example wave function: a different 'reality'
 - The orbital energy of the d-electrons can be very different from the orbital energy of the bond-forming electrons
 - \rightarrow forbidden from interacting on the wavefunction level

