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Who am I? 

• Doctoral researcher

• High-pressure 

synthesis

• Perovskites

• Magnetism and 

superconductivity

• Welcome to ask 

questions via e-mail!



LECTURE SCHEDULE

EXAM:  Tuesday Oct. 17, 9:00-12:00 in Ke2

Mon  (Ke3)  12.15 – 14.00 

Wed (Ke2)  10.15 – 12.00

Fri (Ke5)  10.15 – 12.00Date Topic 

1. Wed 06.09. Course Introduction & Short Review on Elements & Periodic Table 

2. Fri 08.09. Short Survey of Main Group Elements

3. Mon 11.09. Zn + Ti, Zr, Hf & Atomic Layer Deposition (ALD)

4. Wed 13.09. Transition Metals: General Aspects & Pigments

5. Fri 15.09. Redox Chemistry

6. Mon 18.09. Crystal Field Theory (Linda Sederholm)

7. Wed 20.09. V, Nb, Ta & Perovskites & Metal Complexes & MOFs & MLD

8. Mon 25.09. Cr, Mo, W & 2D materials & Mxenes & Layer-Engineering

9. Wed 27.09. Mn, Fe, Co, Ni, Cu

10. Fri 29.09. Cu & Magnetism & Superconductivity

11. Mon 02.10. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)

12. Wed 04.10. Lanthanoids + Actinoids & Luminescence

13. Fri 06.10. Resources of Elements & Rare/Critical Elements & Element Substitutions

14. Fri 13.10. Inorganic Materials Chemistry Research



Contents 

• Spatial distribution of d-orbitals

• Octahedral and tetrahedral environment

• Orbital electron occupation: effect on energy

• Visible and measurable effects



QUESTIONS: Lecture 6

• In octahedral crystal field, transition metal cations with the electron 

configurations of d4, d5, d6 and d7 have the choice of showing two different 

spin states, high-spin state or low-spin state. Give the electron configurations 

for which the same applies in tetrahedral crystal field.

• How many unpaired electrons do the following ions have in high-spin state in  

(a) octahedral, and (b) tetrahedral crystal fields: Cr3+, Mn2+, Fe2+ and Co+2?

• For which of the following ions (assume high-spin) would you expect to see 

(strong) Jahn-Teller distortion: Cr3+, Mn3+, Fe3+, Co3+, Cu2+. Explain why!

Name your file Exe-6-Familyname; Return by noon tomorrow into MyCourses drop-box



Crystal (ligand) field theory

• Electron configuration of n-period transition metal (T) : ns2 (n-1)dx

• For a free atom T, all d-orbitals are degenerate (= have the same energy)

• For T surrounded by neighbours (crystal, molecule or solution), the ns2 electrons 

and possibly also a portion of the d-electrons (y) participate in the 

formation of the chemical bond

→ T(2+y)+ : d(x-y)

• Portion of d-electrons (x-y) remain non-bonded

• These remaining d-electrons are the source of exciting properties



Geometry of d-orbitals

In an isolated atom

the different d-orbitals

of the same shell

all have the same energy

(but different shapes & 

orientations)

= degenerate states



Bonded T-atom
• Each T atom (cation) likes simultaneously to:

1. get the nearest-neighbour anions (e.g. O2-) as close as possible 

(such that the bond can form)

2. keep the non-bonded d-electrons away from the nearest-neighbour anions

(to minimize electron-anion repulsion)

→ this repulsion determines the orientation of the d-orbitals related to the nearest-

neighbour anions

• All the five d-orbitals feel the repulsion → energy increased compared to the energy level in free T atom

• d-orbitals that are closest to the nearest-neighbour anions feel the strongest repulsion 

and so have the highest energy, while those that are farther have a lower energy

• d-orbitals have different shapes and spatial orientations

→ energies of the orbitals split () when the T cation is surrounded by anions 

(i.e. degeneration of the d orbitals disappears)



Octahedral ligand field

• three d orbitals (dxy, dyz and dzx) orient towards the empty spaces between the anions 

→ lower energy (2/5 o) t2g orbitals

• two d-orbitals (dz2 and dx2-y2) orient towards the anions

→ higher energy (3/5 o) eg orbitals



3/5 o
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Octahedral ligand field



• 4 anions/ligands around transition metal T cation

• compared to octahedral case, splitting is smaller:                           

• typically tet = 4/9 oct for the same metal/anion pair

Tetrahedral ligand field



Geometric distribution of 

surrounding atoms changes the 

orbital energies

→ Splitting of d-orbital energies

Also f-orbital energies can split.

Low and high field splitting



Electron distribution



How do the d-electrons occupy split orbitals?

Two contadictory goals:

(1) Minimum energy  → low spin (if large )

(2) Hund’s rule (avoid electron pairs)  → high spin (if small )

As tet = 4/9 oct, tetrahedral case almost always high-spin

E
eg

t2
g

Large o

low-spin

eg

t2
g

small o

high-spin

Octahedral 

ligand field



Let’s consider

the OCTAHEDRAL case

(in your lecture exercise 

you will consider            

the tetrahedral case) 

Spin state Low spin High spin



Colours of d-block metal ions

• partly filled d-orbitals

• electrons can hop between d-orbitals 

• energy needed for the transfer is small

• corresponds to visible light wavelengths

• ions absorb certain wavelengths within 

the visible light spectrum

• if an ion absorbs certain colour (e.g. red), 

the transmitted or reflected light contains 

relatively more other colours (blue and 

green)

→ the ion looks coloured (bluish green)

• ions with empty or full orbitals (d0 and d10) are colourless

• ions with half-filled orbitals (d5) are colourless or faintly coloured



CFSE: 

Crystal Field Stabilization Energy



Crystal field stabilization energy

• How the electron configuration in the split field 

compares to the non-split field

𝑪𝑭𝑺𝑬 = Δ𝑬 = 𝑬𝒄𝒓𝒚𝒔𝒕𝒂𝒍 𝒇𝒊𝒆𝒍𝒅 − 𝑬𝒊𝒔𝒐𝒕𝒓𝒐𝒑𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

• What contributes to the energy change:

• Geometry 

• d-shell occupation 

• Spin pairing

• Ligand character



Calculation example 1

CFSE = ECF = [3 x (-2/5) + 1 x (3/5)]Δo = - 3/5 Δo

Octahedral crystal field

• each t2g electron stabilizes (relatively) the compound

• each eg electron destabilizes (relatively) the compound

Eiso = [4 x 0]Δo = 0
+

0

-



Calculation example 2: high spin

CFSE = ( -4/5 Δo + 2 P ) - 2 P = -4/5 Δo

Octahedral crystal field

• Spin pairing energy to consider! Pairing energy is P for each pair 

Eiso = [7 x 0]Δo + 2 P = 2 P ECF = [5 x (-2/5) + 2 x (3/5)]Δo + 2 P = -4/5 Δo + 2 P



Calculation example 2: low spin

CFSE = ( -9/5 Δo + 3 P ) - 2 P = -9/5 Δo + P

Octahedral crystal field

• Spin pairing energy to consider! Pairing energy is P for each pair

Eiso = [7 x 0]Δo + 2 P = 2 P ECF = [6 x (-2/5) + 1 x (3/5)]Δo + 3 P = -9/5 Δo + 3 P



General trend of CFSE

similarities with other thermodynamic energy trends - more info:

https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites

_%28Inorganic_Chemistry%29/Crystal_Field_Theory/Octahedral_vs._Tetrahedral_Geometries

https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_%28Inorganic_Chemistry%29/Crystal_Field_Theory/Octahedral_vs._Tetrahedral_Geometries
https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_%28Inorganic_Chemistry%29/Crystal_Field_Theory/Octahedral_vs._Tetrahedral_Geometries


Transition metal fluorides

MnF2

↓

Mn2+ 

↓

5 d-electrons

all unpaired

↓

3x(-2/5) + 2x(3/5) = 0



CFSE and ionic radius

▪ FOR EXAMPLE: 3d metals in 

octahedral coordination

▪ At a fixed oxidation state, ionic radius 

decreases from left to right

▪ HOWEVER: each electron in eg orbital 

increases the ionic radii

▪ Ionic radius depends on spin state !

high-spin

low-spin



Asymmetric ligand field



Jahn-Teller distortion
Distorted Regular

We come back to this when we discuss high-temperature 

superconducting copper oxides later in this course

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FPrototypical-octahedral-distortions-at-a-Cu-site-in-CuO-In-an-undistorted-B1-structure_fig5_287216014&psig=AOvVaw0SA5a5ALFZrduV391rRFKv&ust=1633413115383000&source=images&cd=vfe&ved=0CAYQjRxqFwoTCNif7ZWIsPMCFQAAAAAdAAAAABA1


Jahn-Teller distortion

▪ 1937: Hermann Arthur Jahn & Edward Teller

▪ Important in explaining: spectroscopy, stereochemistry, crystal 

chemistry, solid-state physics and materials science

▪ All is explained by the repulsions between ligands/anions and 

electrons at outermost orbitals

▪ Crystal field effect: ligands raise the (closer) orbital energy

▪ Jahn-Teller effect: electrons at the higher-energy orbital push the 

ligand/anion farther

▪ JT effect is most visible in octahedral environment when there is 

different electron occupancies at the two eg orbitals (as the 

ligands/anions come closest to these orbitals)        

→ Distortion (typically elongation) of the octahedron



https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FJahn-Teller-distortion-effects-for-LS-HS-states-of-Fe-Mn-and-Co-2-3-ions_fig2_332229374&psig=AOvVaw3-Onb_zoldDkW9Xr-vottu&ust=1633376908245000&source=images&cd=vfe&ved=0CAYQjRxqFwoTCMiZgqWBr_MCFQAAAAAdAAAAABAJ


Significant J-T ions

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.adichemistry.com%2Finorganic%2Fcochem%2Fjahnteller%2Fjahn-teller-distortion.html&psig=AOvVaw2oZmwJbk9GdFeocpNbvJbo&ust=1633270198255000&source=images&cd=vfe&ved=0CAYQjRxqFwoTCMDN0uHzq_MCFQAAAAAdAAAAABA9


Octahedral elongation

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.wikiwand.com%2Ffi%2FJahnin%25E2%2580%2593Tellerin_ilmi%25C3%25B6&psig=AOvVaw0jApHFxxVgjYmppei2ZGOw&ust=1633268569905000&source=images&cd=vfe&ved=0CAYQjRxqFwoTCLCTzoDuq_MCFQAAAAAdAAAAABBG


Magnitude of splitting

& splitting effects



SPECTROCHEMICAL SERIES

• Empirically found order for ligands/anions

• Ligands in the order of the magnitude of splitting  they produce

• Below is just part of the series

CO > CN- > NO2- >> O2- >> H2O > OH- > F- > N3- > NO3- > Cl- > SCN- > S2- > Br- > I-

π acceptors π donors

EXAMPLE: For O2- :  is still relatively small

→ high-spin configurations common in oxide materials

EXAMPLE: Fe2+: d6

- [Fe(H2O)6]
2+: high-spin → paramagnetic

- [Fe(CN)6]
4-: low-spin → diamagnetic



Ligand change → colour change



Magnitude of the splitting energy depends also on:

(1) Transition metal T itself

- 50% larger for 4d metals than for 3d metals

- 25% larger for 5d metals than for 4d metals

→ 4d and 5d metals almost always: low-spin

(2)  Oxidation state of T

- With increasing oxidation state of T

→ anions become closer

→ larger repulsion between d electrons and anions

→ larger 

- 3d metals: when T2+ → T3+,  is doubled

(3) Number of anions/ligands

- The more ligands the larger  : tet  4/9xoct



CFT and magnetism

• Perovskite: magnetic T-ion in 

octahedral coordination

• Magnetic interaction depends 

on orbital connections

• Bonding angle influences 

orbital overlap geometrically



CFT and superconductivity

• Perovskite cousin

• Copper in different 

coordination environments

• Orbital occupation of copper 

is key to the formation of 

Cooper pairs

→ superconduction

𝐘𝐁𝐚𝟐𝐂𝐮𝟑𝐎𝟕 𝐘𝐁𝐚𝟐𝐂𝐮𝟑𝐎𝟖



Extra material… 



Quantum origin of orbitals

• Solving the Hamiltonian of quantum physics

• …leads to the so-called Legendre polynomials

• Hamiltonian is split into sub-wavefunctions by quantum numbers l, m, s 

• → orbital identificators

• When atoms form a bond, the wavefunctions of the atom combine into a new wavefunction →

the atomic orbitals are replaced by bond orbitals



Repulsion but no bonding?
An excellent after-class question from last year:

How can the d-electrons avoid bonding with those same electrons 

that are ‘pushing’ on them in the metal-ligand bond?

• The electrons in an orbital have both particle-properties and 

wavefunction (orbital) properties

• Particle-properties include electric charge and Coulomb 

repulsion: spatial positions matter

• The d-orbitals that are in the same geometrical space as the 
bond to the ligand, will feel the bonding electrons’ charge

• Orbital properties concern the electrons’ quantum mechanical 

identity, for example wave function: a different ‘reality’

• The orbital energy of the d-electrons can be very different 
from the orbital energy of the bond-forming electrons

• → forbidden from interacting on the wavefunction level

Space-time reality
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Fe3+ d-orbital electrons

Fe-O bonding orbital 

electrons (from s- and p-

orbitals of O and Fe)

Close by physically: feel 

the Coulomb force

Far away in the quantum world: 

no wavefunction interactions 

and no bonding
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