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Quiz 2

Question 1

-u Edit question ¥ Flag question Marked out of 1.00 Not yet answered

What is a correct definition of the Fourier transform?

[ a. The Fourier transform is a change of basis, which re-expresses an input sequence into a basis of sine and
cosine functions.

[J b. The Fourier transform is change of basis, which re-expresses an input sequence into a basis of wavelet
functions.

Question 2

ﬁ Edit question V" Flag question Marked out of 1.00 Not yet answered

What can a low-pass filter be used for?

Select one or more:

[J a. Isolating slow-varying signals to study them independentaly from fast-varying signals.

[ b. Filtering out noise occuring at low frequencies.

[ c. Filtering out noise occuring at high frequencies (e.g., measurement noise).



Quiz 2

Question 3

¢- Edit question Vv Flag question Marked out of 1.00 Not yet answered

What is the difference between a spectrum and a spectrogram?

[J a. A spectrum describes how the power of a signal is distributed over frequencies. A spectrogram tracks the
spectrum of frequencies of a signal as it varies with time.

[J b. There is no difference: 'spectrum' and 'spectrogram' are synonymous.
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Quiz 2

Question 4

What is the Fast Fourier Transform (FFT)?

[J a. It is an algorithm that computes the discrete Fourier transform of a sequence very efficiently.

[J b. It is an approximation of the Fourier transform that can only be applied in certain cases.



Outline of the course

1. Mean, Standard Deviation, Standard Error, Confidence Intervals, T-test

2. Fourier Transform, Wavelet Transforms, Spectrograms, High-pass, Low-
pass filters

3. Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD)

4. Clustering Methods
5. Linear Regression / Logistic Regression

6. Non-linear Methods: Independant Component Analysis, t-Stochastic
Neighbour Embedding, Random Forests, Deep Networks

7. Invited lectures from the biomedical industry



Explain to your neighbor for 5 minutes

e Whatis PCA?
(switch roles)
e What can it be used for?



A case study: whole brain calcium imaging in the fruit fly

Experiment

- Calcium imaging with a two-photon scanner (indicator: GCaMP6m)

- 250,000 voxels (200,000 neurons)
2.6 micron*2.6 micron*7.5micron

- acquisition frequency: 2Hz

- session duration: 33 minutes (4000 points)

10% - no stimulus / no behavior
200 ms



A case study: whole brain calcium imaging in the fruit fly




A case study: whole brain calcium imaging in the fruit fly

real time x 10




A case study: whole brain calcium imaging in the fruit fly

subtracting the mean activity of every voxel

0 T i
.
- . -

o P~
. » W
- -
0
A -
- - " -
z] LR . .
-’ - -
. -

- K ;"
it .'r' . ’ 3 bt |- :
- .- "‘ 1y 'L - -...f. L o | - }
o - 4 . - o -
A e T B L ek
S g AL e T
.o-'--:-. .-3‘1 ? - ..[ \T .J"'h.. '.
g aots, L ) XN
& -r.l' e e ok
' " N . P o an s
P SRR L LT
o " i 1
P [ -

18D -

120 -

10



A case study: whole brain calcium imaging in the fruit fly

averaging the activity over
regions:
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A case study: whole brain calcium imaging in the fruit fly

averaging the activity over
regions:




A case study: whole brain calcium imaging in the fruit fly

PCA consists in
“lumping together”
regions that cofluctuate
in order to maximize
the signal (informal
definition).




Use-cases of PCA: a good first step to analyze
high-dimensional datasets

* Exploratory data analysis of a high-dimensional dataset
* Revealing hidden structure in a dataset
* Reducing the dimensionality of a dataset for modelling purposes

* Removing noise



A case study: whole brain calcium imaging in the fruit fly

Vectorial notation of activity:




Activity in region 2

Geometric representation of the data
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Geometric representation of the data

3 Vectorial notation of activity:
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A geometric view of PCA

PCA consists in “lumping together” regions that cofluctuate in order to maximize the signal
(informal definition).
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Definition: covariance

e Given two paired variables X = {513‘1, LYy ouny :I:‘N}
Y =1{v1,92, .., Y~}

* Their covariance is given by

Coo(X,Y) = = 3 (s = i) (s — oy

- | |

mean of signal X  mean of signal Y



A geometric view of PCA

PCA consists in finding a new ccordinate system aligned with the covariance of the data, such
that the covariance between variables is null in that new basis (more formal definition).

Activity in region 2

Data before PCA

Data after PCA
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Algebraic view of PCA

“Algebra is the offer made by the devil to the
mathematician. The devil says: | will give you this
powerful machine, it will answer any question you
like. All you need to do is give me your soul: give up
geometry and you will have this marvelous machine.”

— Michael Francis Atiyah

source: https://www.goodreads.com/quotes/9026708-algebra-is-the-offer-made-by-the-devil-to-the
https://uscatholic.org/articles/201409/what-do-catholics-believe-about-the-devil/
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https://www.goodreads.com/quotes/9026708-algebra-is-the-offer-made-by-the-devil-to-the

Algebraic view of PCA (1) ¢

To arrive to a formal (algebraic) definition of PCA, we first need to store the data into a matrix:
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Algebraic view of PCA (2)

PCA consists in subtracting the mean of the data...

time

data matrix 4
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Algebraic view of PCA (3)

....and project the data time
into a new basis... -
mean-centered _
data matrix B -
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Algebraic view of PCA (4)

... such that the covariance of the
data is diagonal in the new basis:

data matrix
in new basis
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Formal definition of PCA

PCA consists in finding an (orthonormal) basis such that the covariance of the data is diagonal in that basis.

In equations: we want to find a change of basis E such that, for

/ = EX,LL , the dataset expressed in this new basis,

we have COU(Z) — ) where D is a diagonal matrix

Properties of E such the E qualifies as an orthonormal change of basis:

[€7llz = 1

for all i

e—;_?j =0 for all izj

After calculations (see supplementary slide), we can show that, if E satisfies the conditions of PCA, then
the covariance matrix of the data X can be decomposed in the following product:

COU(X) = EtDE where D is a diagonal matrix and E orthonormal

source: https://en.wikipedia.org/wiki/Principal_component_analysis °



Definitions: eigenvectors, eigenvalues and scores

Cov(X)=E'DE

7 = EX,

eigenvectors

\

eigendecomposition of Cov(X)

PC scores

eigenvalues
o ()
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Eigenvalues and Explained Variance

The eigenvalues are equal to the variance of the data projected along their
corresponding eigenvector:

Var(X.ej) =\, foralli

Activity in region 2

Activity in region 1 -



Case study: applying PCA to the fly brain

eqi es Eigenvectors
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Insights from applying PCA to the fly brain

* A few dimensions can explain quite a lot of the variability in the data.

* The whole brain activity is the dominant source of variability in the
data.

* There is some interesting structure in the activity: for example, the
two hemispheres exhibit sharp events which look pretty independant.



Steps to perform PCA on a computer

1. Subtract the mean of the data (computed over samples): Xu =X — Ty

2. Compute the covariance matrix of the data: Cov(X) = XMXZ

3. Compute eigendecomposition of Cov(X) using a precoded algorithm: COU(X) — E'DE
4. Plot (ranked) eigenvalues and interpret the dimensionality of the dataset.

5. Plot eigenvectors and interpret them.

6. (Sometimes) Compute and plot PCscores Z = E/X,, and interpret them.



Risks associated with interpreting PCA

* Reducing dimensionality can result in losing some small but important
signals.

* PCA can be blind to some complex structure present in the data (see
board for examples).

* PCA always gives a decomposition, even on a random dataset. This
decomposition is not always meaningful.



Next lecture

* Clustering methods



Supplementary material
(can be ignored)



Calculation showing how to arrive to the equation of PCA

We are looking for a change of basis E for X such that COU(Z) — [J)  whereDis diagonal

and where / — EXM

We can rewrite Cov(Z) as: CO’U(Z) — ZZt by the definition of covariance and because Z is mean-centered

CO’U(Z) = (EXM)(EXM)t by the definition of Z

COU(Z) — EXMX/ZEt this is how the transpose operator applies to a matrix
product

COU(Z) = ECO”U(X)Et by definition of the covariance of X

And so we are looking for E such that ECO"U(X)Et =D where D is diagonal

for any orthonormal

Finally we can rewrite this equation as OO’U(X) = EtDE as -1 =F' matrix 35




iterative algo to compute PCA

Covariance-free computation |edit]

In practical implementations, especially with high dimensional data (large p), the naive covariance method is rarely used because it is not efficient due to high computational and memory costs of explicitly determining the covariance matrix. The

covariance-free approach avoids the np2 operations of explicitly calculating and storing the covariance matrix XTX, instead utilizing one of matrix-free methods, for example, based on the function evaluating the product XT(X r) at the cost of
2np operations.

Iterative computation |[edit]

One way to compute the first principal component efficiently38! is shown in the following pseudo-code, for a data matrix X with zero mean, without ever computing its covariance matrix.

r = a random vector of length p
r=r / norm(r)
do ¢ times:
s=0 (a vector of length p)
for each row x in X
s=s+ (x - r)x
A =rTs // A is the eigenvalue
error = |[A - r — s|
r =s / norm(s)
exit if error < tolerance
return A, r

This power iteration algorithm simply calculates the vector XT(X r), normalizes, and places the result back in r. The eigenvalue is approximated by rT (XTX) r, which is the Rayleigh quotient on the unit vector r for the covariance matrix
XTX . If the largest singular value is well separated from the next largest one, the vector r gets close to the first principal component of X within the number of iterations ¢, which is small relative to p, at the total cost 2cnp. The power iteration

convergence can be accelerated without noticeably sacrificing the small cost per iteration using more advanced matrix-free methods, such as the Lanczos algorithm or the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
method.

Subsequent principal components can be computed one-by-one via deflation or simultaneously as a block. In the former approach, imprecisions in already computed approximate principal components additively affect the accuracy of the
subsequently computed principal components, thus increasing the error with every new computation. The latter approach in the block power method replaces single-vectors r and s with block-vectors, matrices R and S. Every column of R
approximates one of the leading principal components, while all columns are iterated simultaneously. The main calculation is evaluation of the product XT(X R). Implemented, for example, in LOBPCG, efficient blocking eliminates the
accumulation of the errors, allows using high-level BLAS matrix-matrix product functions, and typically leads to faster convergence, compared to the single-vector one-by-one technique.

source: https://en.wikipedia.org/wiki/Principal_component_analysis
36



