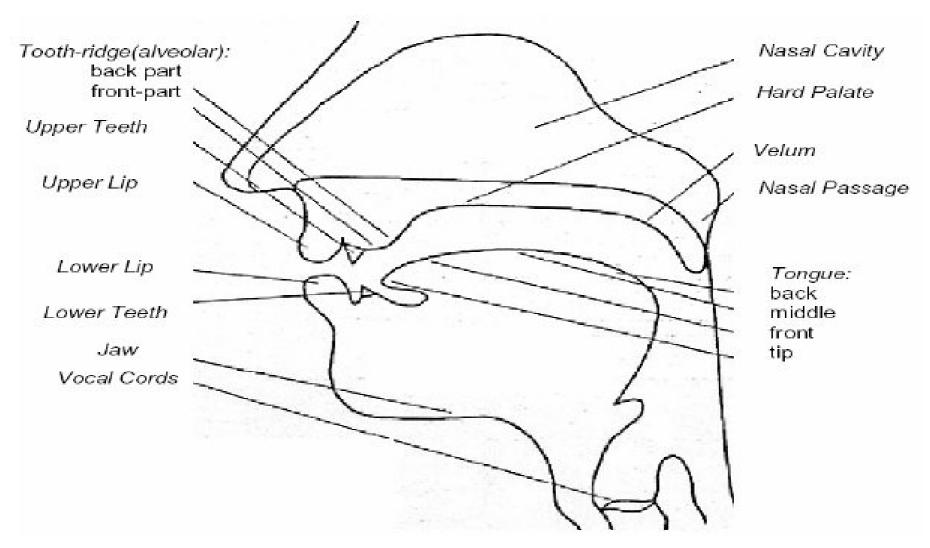
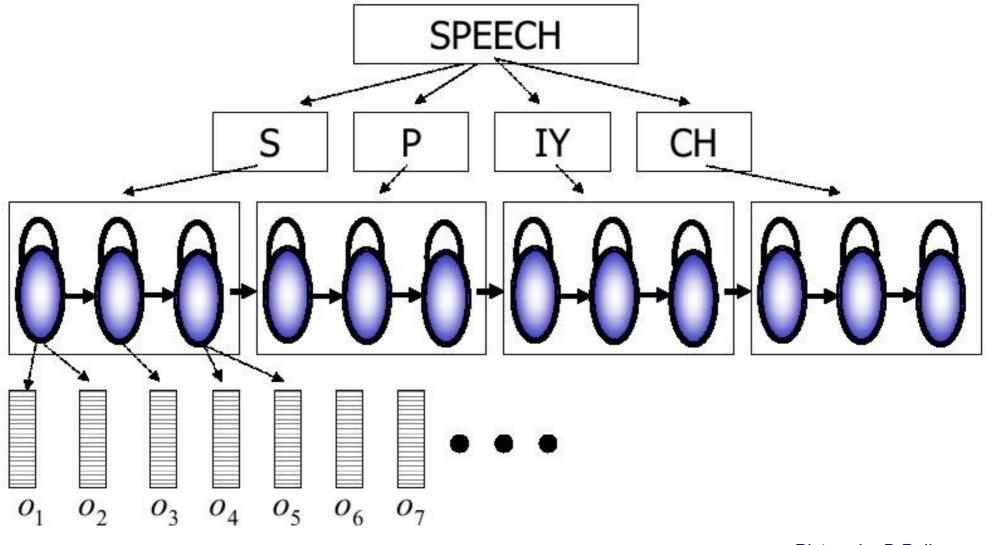
Timeline in the course


Meetings		Home exercises	Project work	
Wednesdays	Thursdays		status	
Speech features and classification		1.Feature classifier	Literature study	
Phoneme modeling and r	ecognition	2.Word recognizer	Work plan	
Lexicon and language me	odeling	3.Text predictor	Analysis	
Continuous speech and a	advanced search	4.Speech recognizer	Experimentation	
End-to-end ASR		5.End-to-end recognizer	Preparing reports	
Projects1	Projects2		Presentations	
Projects3	Projects4 Conclusion		Report submissior	
	Wednesdays Speech features and class Phoneme modeling and r Lexicon and language mo Continuous speech and a End-to-end ASR Projects1	WednesdaysThursdaysSpeech features and classificationPhoneme modeling and recognitionLexicon and language modelingContinuous speech and advanced searchEnd-to-end ASRProjects1Projects2Projects3Projects4	WednesdaysThursdaysSpeech features and classification1.Feature classifierPhoneme modeling and recognition2.Word recognizerLexicon and language modeling3.Text predictorContinuous speech and advanced search4.Speech recognizerEnd-to-end ASR5.End-to-end recognizerProjects1Projects2Projects3Projects4	

Learning goals for this week

⇒ 1.Phonemes, HMM

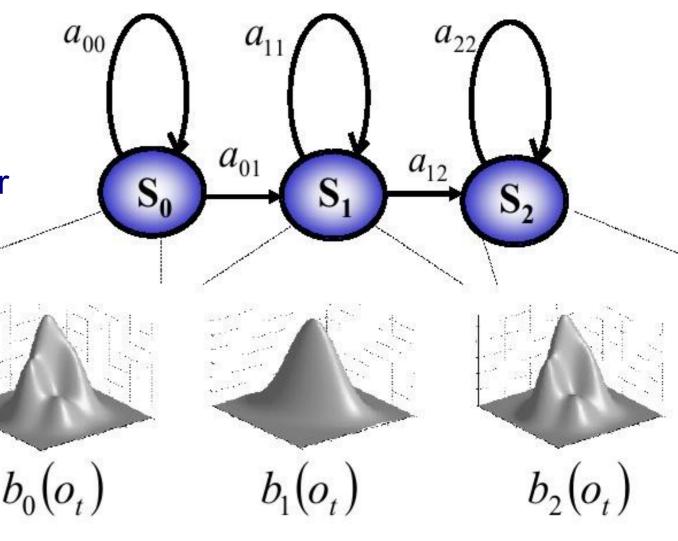
- remember from last week
- 2.Vocabulary
 - know how to compose the recognition lexicon
- 3. Statistical language model (LM)
 - know how to construct statistical LMs
 - know pros and cons of statistical LMs
- 4.Neural network language model (NNLM)


Review: Production of speech sounds

Speech recognition

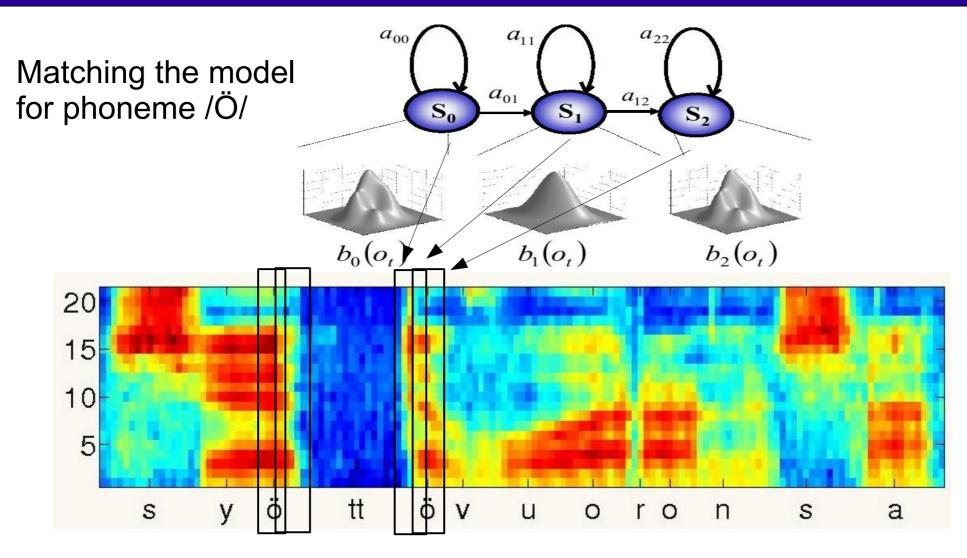
Picture from Huands text book (2001)

Review: HMM as a phoneme model


2023 Mikko Kurimo

Speech recognition

Picture by B.Pellom46


Review: GMM-HMM system

Each state emits sounds according to its GMM model
This generative model can be used for text-to-speech, too
The higher a(ii), the longer is the duration

Speech recognition

Review: An example of a GMM-HMM system

2023 Mikko Kurimo

Speech recognition

Picture by B.Pellom46

Result of isolated word recognition?

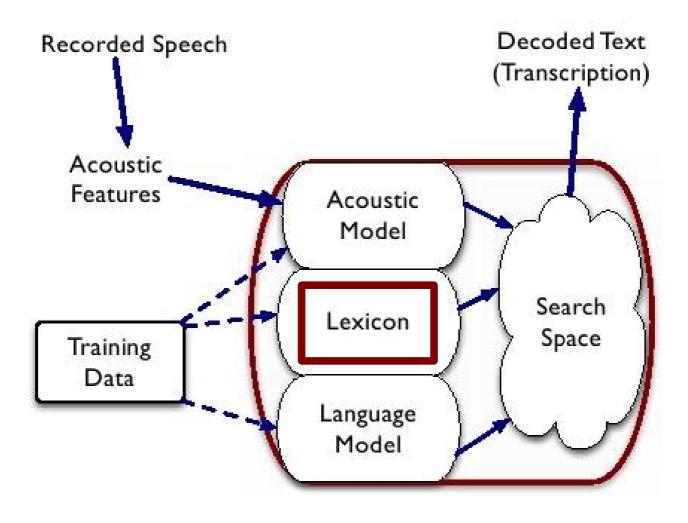
Dictionary	Corr	Sub	Del	Ins	Err	S. Err
numbers	100.00	0.00	0.00	0.00	0.00	0.00
w100	97.78	2.22	0.00	4.44	6.67	4.44
w1000	84.44	15.56	0.00	8.89	24.44	17.78
w10000	66.67	33.33	0.00	33.33	66.67	42.22
	•					

Taulukko 1: Word error rates using different dictionaries

- Rapid increase of errors for large vocabulary
- Real speech: (tens/hundreds) thousands of words...
- Continuous speech: much more difficult, because the words are glued together

Content this week

1.Phonemes, HMM


⇒ 2.Vocabulary

- 3.Statistical (n-gram) language model
- 4.Neural network language model (NNLM)
- 5.Home exercise: (3) Build a language model for recognition of continuous speech!
- 6.Status of project group works

What is speech recognition?

- Find the most likely word or word sequence given the acoustic signal and our models!
- Language model defines words and how likely they occur together
- Lexicon defines the word set and how the words are formed from sound units
- Acoustic model defines the sound units independent of speaker and recording conditions

Vocabulary = Lexicon

2023 Mikko Kurimo

Speech recognition

Picture by S.Remals 6

Small vocabulary

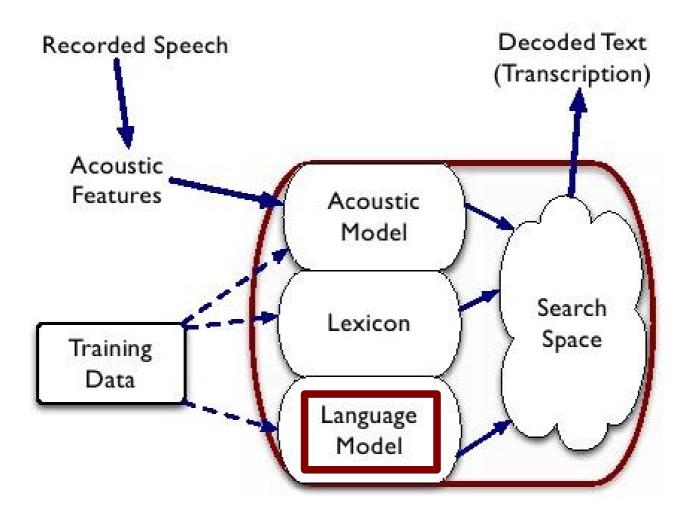
- Only listed words will appear in the task
- Only listed words will be recognized, others will always cause errors!
- Applications
 - Number dialling, name dialling
 - Command and control interfaces
 - Menu based services
- Prior probabilities can be added

one two three four five six seven eight nine zero

Pronunciation

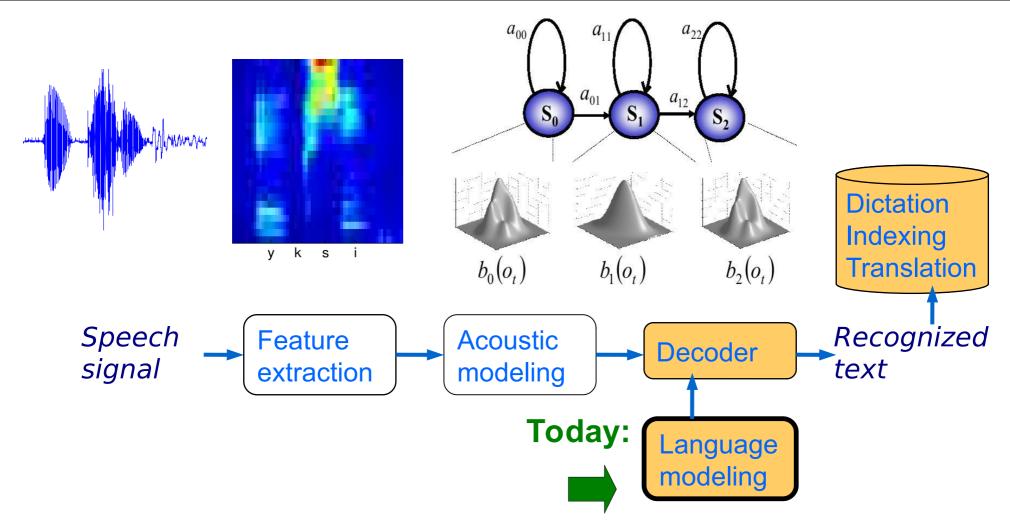
- A lexicon or pronunciation dictionary tells how words are pronounced
- Each word is described as a sequence of phonemes (or triphones)
- Problems to think about:
- 1. One word may have several pronunciations (with priors), does it matter?
- 2. Several words may have the same pronunciation, does it matter?
- 3. How to get pronunciations for new words?
- 4. Adding rare words or pronunciations decreases ASR performance. Why?

one	w ah n			
<u>two</u>	t uw			
three	th r iy			
tomato(0.5) t ax m <u>ey</u> t ow				
tomato(0.5)) t ax m <u>aa</u> t ow			
<u>too</u>	t uw			


Content today

- 1.Phonemes, HMM
- 2.Vocabulary

3.Statistical language model


- 4.Neural network language model
- 5.Home exercise: (3) Build a language model for recognition of continuous speech!
- 6.Status of project group works

Language model

Speech recognition

Speech recognition -from beginning to end

What is speech recognition?

- Find the most likely word or word sequence given the acoustic signal and our models!
- Language model defines words and how likely they occur together
- Lexicon defines the word set and how the words are formed from sound units
- Acoustic model defines the sound units independent of speaker and recording conditions

Language model

- Assigns a prior probability to word sequences
- Reduces search space and ambiguity
- Resolve homonymes:
 - <u>Write</u> a letter to Mr. <u>Wright</u> right away
- Power vs. flexibility
- A good review and comparison of the latest methods:
 - "A bit of progress in language modeling", extended version (2001) by Joshua T. Goodman
 - www.research.microsoft.com/~joshuago/longcombine.pdf

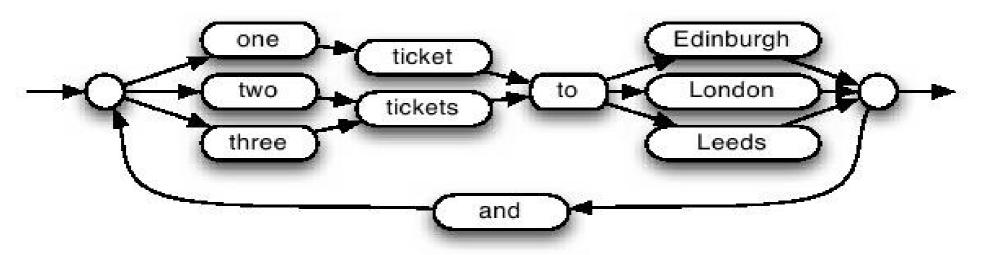
When humans fail: popular misheard lyrics

- "Gladly, the cross-eyed bear." /"Gladly The Cross I'd Bear." Traditional Hymn
- "There's a bathroom on the right."/"There's a bad moon on the rise." Bad Moon Rising, Creedence Clearwater
- "Excuse me while I kiss this guy."/"Excuse me while I kiss the sky." Purple Haze, Jimi Hendrix
- "Dead ants are my friends; they're blowin' in the wind."/"The answer my friend is blowin' in the wind." Blowin' In The Wind, Bob Dylan
- "The girl with colitis goes by."/"The girl with kaleidoscope eyes." Lucy in the Sky With Diamonds, The Beatles

Why humans fail? Suggestions?

- "She's got a chicken to ride."/"She's got a ticket to ride." Ticket to Ride, The Beatles
- "Are you going to starve an old friend?"/"Are you going to Scarborough Fair?" Scarborough Fair, Simon and Garfunkel
- "What a nice surprise when you're out of ice."/"What a nice surprise bring your alibis." Hotel California, Eagles
- "Hope the city voted for you."/"Hopelessly devoted to you." Hopelessly Devoted to You, Grease
- "I'm a pool hall ace."/"My poor heart aches." Every Step You Take, The Police

Examples from: http://www.fun-with-words.com/


2023 Mikko Kurimo

Speech recognition

Applications of Statistical LMs

- 1.Spelling correction, text input
- 2.Optical character recognition, e.g. scanning old books
- 3. Automatic speech recognition
- 4. Statistical machine translation
- 5.Information retrieval
- 6.Text-to-speech
- 7...(Can you think of any other? Suggest!)
- 8....

Simple finite-state network grammar

- Limited domain models, constructed by hand
- Only a limited set of sentences are recognized
- Significant reduction of the recognition task

Speech recognition

HTK example: LM of spoken travel phrases

- \$GENPLACE = ((railway station) | (hotel) | the bus station) | (the airport));
- \$GEOPLACE = (london) | (brussels) | (tokyo) | (beijing) | (helsinki);
- \$FOOD = (chicken) | (beef) | (fish) | (ham) | (cheese) | (eggs) | (salad);
- \$DRINK = (coffee) | (tea) | (juice) | (water) | (beer) | (whiskey) | (vodka);
 (STARTSIL (
- (how much is a ticket to \$GEOPLACE) |
- (how do i get to (\$GENPLACE | \$GEOPLACE) |
- (could i have [some](\$FOOD | \$DRINK)[please])|
- (may i have a (glass | cup | bottle) of \$DRINK) |
- (a glass of \$DRINK [please])
-) ENDSIL)

HTK example: LM of spoken travel phrases

EMIME project (2010): https://www.youtube.com/watch?v=wqv7uYAyAQ0

\$PAIKKAAN = Kyotoon | Hokkaidoon | (Lontooseen) | (Brysseliin) | (Edinburghiin) | (Tokioon) | (Pekingiin) | (Helsinkiin);

\$RUOKAA = (kanaa) | (naudanlihaa) | (kalaa) | (kinkkua) | (makkaraa) | (juustoa) | (munia) | (salaattia) | (vihanneksia);

\$JUOMAA = (kahvia) | (teetä) | (mehua) | (vissyä) | (vissy vettä)| (vettä) |
(olutta) | (punaviiniä) | (valkoviiniä) | (viskiä) | (vodkaa) | (rommia);
(STARTSIL(

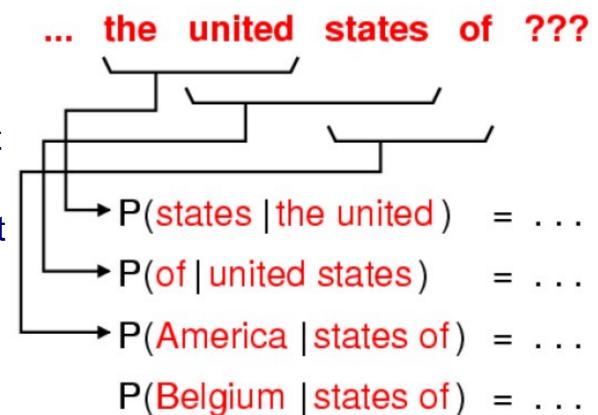
(paljonko maksaa lippu \$PAIKKAAN) |

(miten pääsen (\$GEOPAIKKAAN)) |

(saisinko (\$RUOKAA | \$JUOMAA) [kiitos]) |

(Saisinko (lasillisen | kupillisen | pullollisen) \$JUOMAA) |

(lasillinen \$JUOMAA [kiitos])


) ENDSIL) 2023 Mikko Kurimo

N-gram language model

- N can be 1,2,3,4,...
- Generative model which can be used to produce synthetic sentences
- Statistical, scalable, can deal with ungrammatical sequences
- Suitable for left-to-right search
- Suits well for languages of rigid word order

N-gram models

- E.g. trigram = 3-gram:
- Word occurrence depends only on its immediate short context
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(w_j)}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
 - works well only for frequent bigrams
 - Why not for rare bigrams?

Zero probability problem

- If an N-gram is not seen in the corpus, it will get probability = 0
- The higher N, the sparser data, and the more zero counts there will be
- 20K words => 400M 2-grams => 8000G 3-grams, so even a gigaword corpus has MANY zero counts!
- Smoothing: Redistribute some probability mass from seen N-grams to unseen ones

Smoothing methods

- 1.Add-one: Add 1 to each count and normalize => gives too much probability to unseen N-grams
- **2.Absolute discounting**: Subtract a constant from all counts and redistribute this to unseen ones using N-1 gram probs and back-off (normalization) weights
- 3. Best: Kneser-Ney smoothing: Instead of the number of occurrences, weigh the back-offs by the number of contexts the word appears in
- 4. Instead of only back-off cases, **interpolate** all N-gram counts with N-1 counts

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(w_j)}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew"* | *"eggplant"*) is computed from counts of *"eggplant stew"* and *"eggplant"*
 - works well only for frequent bigrams
 - Why not for good rare bigrams?

Backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= P(w_i)b_{w_j} \quad otherwise$$

- Divide the room of rare bigrams, e.g. "eggplant francisco", in proportion to the unigram P("francisco")
- The sum of all these rare bigrams "eggplant [word j]" is b("eggplant") which is called the back-off weight

Absolute discounting and backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= P(w_i)b_{w_j} \quad otherwise$$

- If bigram is common: Subtract constant *D* from the count
- If not: Back off to the unigram probability normalized by the back-off weight
- Similarly back off all rare N-grams to N-1 grams

Kneser-Ney smoothing

$$egin{aligned} P(w_i \mid w_j) &= rac{c(w_j, w_i) - D}{c(w_j)} & ext{if } c(w_j, w_i) > c \ &= \mathbf{V}(w_i) b_{w_j} & ext{otherwise} \end{aligned}$$

- Instead of the number of occurrences, weigh the back-offs by the number of contexts V(word) the word appears in:
 - In this case the context is the previous word: how many different previous words the corpus has for each word
 - E.g. P(Stew | EggPlant) is high, because stew occurs in many contexts
 - But P(Francisco | EggPlant) is low, because Francisco is common, but only in "San Francisco"

2023 Mikko Kurimo

Speech recognition

Picture by B.Pellom46

Smoothing by interpolation

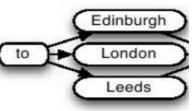
$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)}$$

+ $P(w_i)b_{w_j}$

- Like backing off, but always compute the probability as a linear combination (weighted average) with lower order (N-1)gram probabilities
- Improves the probabilities of rare N-grams
- Discounts (D) (and interpolation weights) can be separately optimized for each N using a held-out data

Weaknesses of n-gram models ?

The French boy lived in the <u>capital city</u>, ___? (Paris)


- 1. Only a fixed length word history is used
 - no long range dependencies
 - depends on word order
- 2. Probabilities are assigned to fixed sequences of words, can only generalize via smoothing or fixed word classes
 - no latent variables, distributed features or vector space
- 3. Large-vocabulary and long-span representations are inefficient and unreliable, because most long word sequences are rare
- 4. Skip n-grams are rarely used, because they would make decoding computationally hard

Testing the language model ?

- 1. Compute the log-likelihood of the words and sentences
- 2. Perplexity, the average number of word choices
- **3. Entropy**, the average number of bits-per-word
- 4. Recognition error rate
- **5.Re-scoring** intermediate ASR results, "word lattices" with pre-computed acoustic probs

Text-only tests

- Compute the **log-likelihood** of the words and sentences
 - use held-out test data
- Perplexity, the average number of word choices

- inverse of the geom. average word probability $(p(w_1, ..., p(w_N))^{-1/N})$
- low perplexity indicates stronger model (or easier data)
- Entropy, the average number of bits-per-word
 - $\Sigma_x p(x) \log_2 p(x)$
 - logarithm of the perplexity
- Fast to compute, careful LM normalization required
- Indicates ASR improvements but no guarantees
- Can not compare over different vocabularies
 Mikko Kurimo
 Speech recognition

ASR tests

- Recognition error rate
 - requires speech data and the full ASR run
 - shows which LM improvements are relevant
 - solving confusable word sequences is important
- **Re-scoring** intermediate ASR results, "word lattices" with pre-computed acoustic probs
 - much faster than full ASR runs
 - errors in lattices can not be recovered

Software for statistical LMs

- CMU/Cambridge Statistical LM toolkit
 - www.speech.cs.cmu.edu/SLM_info.html
 - Easy to use, but some limitations
- SRI Statistical Language Model Toolkit
 - www.speech.sri.com/projects/srilm/
 - State-of-the-art, well maintained, used in our course
- HTK (some support for low order N-grams)
- Morfessor and VariKN made at TKK
 - www.cis.hut.fi/projects/{speech,morpho}/
 - Split words into morphemes, train variable length N-grams

More advanced language models

- Skip n-gram
- Cache n-gram
- Interpolated n-gram
- Topic model, mixture n-gram
- Class LM, Sub-word LM
- Maximum Entropy LM
- Neural Network LM

Test what you learned today!

Individual test for everyone, now:

- 1. Go to https://kahoot.it with your phone/laptop
- 2. Type in the ID number you see on the screen
- 3. Give your **surname** (to get the activity points)
- 4. Answer the questions by selecting **only one** of the options
 - There may be several right (or wrong) answers, but just pick one
 - About 1 min time per question
- 5. 1 activity points for everyone + 0.2 per correct answer in time
 - Kahoot time/score is just for fun, only the answers matter

Content this week

- 1.Phonemes, HMM
- 2.Vocabulary
- 3. Statistical language model
- 4.Neural Network language model
- ➡ 5.Home exercise: (3) Build a language model for recognition of continuous speech!
 - 6.Status of project group works

Home exercise 3

- Build a language model for large vocabulary speech recognition!
- Instructions and help given in Zulip by Anssi Moisio (Part1) and Ekaterina Voskoboinik (Part2)
- Part 1: Language modeling by SRILM toolkit http://www.speech.sri.com/projects/srilm/
- Part 2: Understanding simple NNLMs
- To be returned by Wednesday next week
- H1: done, feedback in process
- H2: Remember the DL this Wednesday 2023 Mikko Kurimo Speech recognition

Home exercise 3: Part 1

- Language modeling by SRILM toolkit
- Goal:
 - understand what n-gram LMs are
 - learn to train n-gram LMs using the SRILM toolkit
 - learn to evaluate n-gram LMs using a text data
- Steps:
 - 1)Compute n-gram counts and prepare a vocabulary from a text corpus
 - 2)Create n-gram LM using Kneser-Ney smoothing
 - 3) Evaluate the LM using text data
 - 4)Compare word and subword n-gram LMs

Home exercise 3: Part 2

- Goal: Understanding simple NNLMs and the difference between FFNN and RNN
- Compute the last word for a sequence of words using two pre-trained neural language models: FFNN and RNN
- Explain how and why the predictions from FFNN and RNN differ and how both differ from n-grams?
- Remember to submit the answers for both Part1 (n-grams) and Part2 (NNLM) in the same pdf file

Feedback

Now: Go to **MyCourses > Lectures** and fill in the feedback for week 3.

Some pics of the feedback from the previous week:

- + the two exercises were helpful to understand HMM
- + quizzes are good, especially going through the right answers
- Kahoot is a bit difficult sometimes
- provide exercise sessions in person
- instructions on project work are very vague

<u>Ave weekly time spent (until week2 / total course target):</u>

Study: 4/50h, Exercise: 6/40h, Project: 5/40h (Max: 6,14,12 One: 15,24,30)

Thanks for all the valuable feedback!

Speech recognition

Project work receipt

- 1.Form a group (3 persons)
- 2.Get a topic (DL week 1)
- 3.Get reading material from Mycourses or your group tutor
- 4.1st meeting: Specify the topic, start literature study (DL week 2)
- **5.** 2nd meeting: Write a work plan (DL week 3)
- 6. 3rd 5th meetings: Perform analysis, experiments
 - and write the report ____ now
 - 7.Book your presentation time for weeks 6 7 (DL week 4)
 - 8. Prepare and keep your 15 min presentation

9.Return the report (DL week 7)

Speech recognition

Start

Final project report

1.Abstract: (your working plan)
 2.Introduction: (your literature review)

 Remember to cite every article you read

 3.Experiments: Describe what you did
 4.Results: Describe the results you got
 5.Conclusion: Your conclusion of the work
 6.References: (list of articles that you read)