JM1: SPEECH and LANGUAGE PROCESSING An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition by Daniel Jurafsky and James H. Martin First Edition http://www.cs.colorado.edu/~martin/slp.html JM2: Second Edition http://www.cs.colorado.edu/~martin/slp.html JM3: Third Edition (draft) http://web.stanford.edu/~jurafsky/slp3/ Lecture 1 - First Lecture JM1: 7.5 Acoustic Processing of Speech . . . . . . .258 Sound Waves . . . . . . . . . . . . . . . .258 How to Interpret a Waveform . . . . . . . .259 Spectra . . . . . . . . . . . . . . . . . .260 Feature Extraction . . . . . . . . . . . .264 7.6 Computing Acoustic Probabilities .. . . . .265-270 JM2: Chapter 9: Automatic Speech Recognition JM3: Chapter 29: Speech Recognition Lecture 2 - Phoneme modeling JM1: 4.1 Speech Sounds and Phonetic Transcription . 92 The Vocal Organs . . . . . . . . . . . . . 94-97 4.2 The Phoneme and Phonological Rules . . . . 102-104 7.7 Training a Speech Recognizer . . . . . . . 270-272 7.1 Speech Recognition Architecture . . . . . .235 7.2 Overview of Hidden Markov Models . . . . . 239-242 5.9 Weighted Automata . . . . . . . . . . . . .167 Computing Likelihoods: The Forward Algorithm 169 Decoding: The Viterbi Algorithm . . . . . .174 Weighted Automata and Segmentation . . . . 178-180 D Training HMMs: The Forward-Backward Algorithm 841 Continuous Probability Densities . . . . . . 847-850 JM2: Chapter 6: Hidden Markov and Maximum Entropy Models Chapter 7: Phonetics Chapter 9: Automatic Speech Recognition JM3: Chapter 8 Hidden Markov Models Chapter 29: Speech Recognition Lecture 3 - Language Modeling JM1: 4.6 Mapping Text to Phones for TTS . . . . . . 119 Pronunciation dictionaries . . . . . . . . 119-121 6.1 Counting Words in Corpora . . . . . . . . 191 6.2 Simple (Unsmoothed) N-grams . . . . . . . .194 More on N-grams and their sensitivity . . .199 6.3 Smoothing . . . . . . . . . . . . . . . . .204 Add-One Smoothing . . . . . . . . . . . . .205 Witten-Bell Discounting . . . . . . . . . .208 Good-Turing Discounting . . . . . . . . . .212 6.4 Backoff . . . . . . . . . . . . . . . . . .214 Combining Backoff with Discounting . . . . 215 6.5 Deleted Interpolation . . . . . . . . . . .217-218 6.7 Entropy . . . . . . . . . . . . . . . . . .221 Cross Entropy for Comparing Models . . . . 224-225 JM2: Chapter 4: Ngrams JM3: Chapter 4: Ngrams Chapter 7: Neural LMs Lecture 4 - Continuous speech recognition JM1: 7.3 The Viterbi Algorithm Revisited . . . . . .242 7.4 Advanced Methods for Decoding . . . . . . .250 A* Decoding . . . . . . . . . . . . . . . .252-258 5.6 Minimum Edit Distance . . . . . . . . . . .151-154 JM2: Chapter 9: Automatic Speech Recognition Chapter 10: Speech Recognition: Advanced Topics JM3: Chapter 29: Speech Recognition Lecture 5: End-to-end ASR