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Problem 1.  Consider the mass/spring/damper system shown in the figure.  The 

control forces are F1 and F2.  Parameter values:  k1=1, k2=4, b1=0.2, b2=0.1, m1=1, 

m2=2. 

 

a. Form a differential model of the system. 

b. Form a state-space representation of the system. 

c.  Plot the singular values as functions of frequency (Matlab). 

d. Calculate the H∞-norm (Matlab). 
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Solution:  

 

a.    By applying Newton’s 2. law 
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b. Choose the state variables 11 yx = , 22 yx = , 13 yx = ,  24 yx =  so that 
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The state-space representation is 
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in which 
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When using Matlab also the D matrix must be given (with correct 

dimensions). 

 

c. In Matlab the command sigma(A,B,C,D) gives the figure 

 

 

d. The calculation of the H∞-norm of the transfer function is a difficult task (and 

no theoretical background for it has been given during the course either).  Use 

the commands of the Robust Control Toolbox in Matlab (it is related to robust 

control theory, but the toolbox can be utilized in other purposes also). 

 

1. G = ss(A,B,C,D); 

2.  hinfnorm(G,0.001); - calculate an approximation to the norm; tolerance 

(accuracy)   0.001.  If desired, the tolerance is not needed.  
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The result is 11.4704.  Note that in the figure the singular values are in dB-units.  If 

you take the maximum of the larger singular value (approximately from the figure) 

and change it from logarithms to ordinary value you get pretty near 11.5 or so. 

 

 

 

Problem 2.  (Matlab)  Consider the transfer function matrix 
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Determine a realization and plot the singular values. 

 

Solution: 

 

Calculate the transfer function matrix by using Matlab 

 

g11=10*tf([1 1],[1 0.2 100]); 

g12=tf(1,[1 1]); 

g21=tf([1 2],[1 0.1 10]); 

g22=5*tf([1 1],conv([1 2],[1 3])); 

G=[g11 g12;g21 g22]; 

 

Change into the state-space form 

 

Gss=ss(G); 

 

Form the minimal realization i.e. the representation with a minimal number of state 

variables that generates the same input-output behaviour. 

 

Gssm=minreal(ss(G)); 

 

Look at the matrices of the representation 

 

[A,B,C,D]=ssdata(Gss); 

[Am,Bm,Cm,Dm]=ssdata(Gssm); 

 

We note that the first state-space representation was in fact the minimal realization (A 

= Am  etc.) 

 

Plot the largest and smallest singular value 

sigma(A,B,C,D) 



  
 

 

 

Problem 3.  Two systems are given by the two transfer function matrices below.  

Calculate the poles and zeros 
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Solution:   

 

System 1:  Minors 
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The pole polynomial  )4)(3)(1()( +++= sssssp , from which the poles 

4,3,1,0 −=−=−== ssss .  (All poles are single, so that the minimal realization has 

four states). 

 

The “largest” minors (here the only ones have the degree 1.  Arrange the pole 

polynomial to the denominator 
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The zero polynomial is 2)( += ssz , so that the zero is 2−=s . 

But what about Matlab.  Let us try 

 



G1=[tf([2 6 4],[1 7 12 0]),tf([1 2],[1 4 3])]; 

pole(G1) 

 

ans = 

 

     0 

    -4 

    -3 

    -3 

    -1 

 

One pole appears twice.  Try the minimal realization 

 

pole(minreal(G1)) 

 

ans = 

 

     0 

    -4 

    -3 

    -3 

    -1 

 

Same results.  But programs are only programs!  Form first a state-space realization, 

and from it the minimal realization 

 

G1ss=minreal(ss(G1)) 

1 state(s) removed. 

  

Now the extra state disappeared 

 

a =  

                        x1           x2           x3           x4 

           x1      -3.0047      0.33629     -0.35451     -0.57787 

           x2       2.6142     -0.31631     -0.18814      0.39683 

           x3       2.4213     -0.47446      -4.2822     -0.90475 

           x4      -1.6142      0.31631       2.1881     -0.39683 

  

  

b =  

                        u1           u2 

           x1      -1.4021      0.16105 

           x2      0.46736    -0.053685 

           x3      0.70105      0.91947 

           x4     -0.46736     0.053685 

  

  

c =  

                        x1           x2           x3           x4 

           y1      -1.2095     -0.34684       1.2297      0.84684 



  

  

d =  

                        u1           u2 

           y1            0            0 

  

Continuous-time model. 

pole(G1ss) 

 

ans = 

 

   -3.0000 

   -4.0000 

   -0.0000 

   -1.0000 

 

The result is correct.  The Matlab command tzero(G1)  (transmission zero) gives the 

zero  –2, as desired. 

 

 

System 2:  Minors 
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Pole polynomial )3()2)(1()( 2 +−+= ssssp , poles 3,2,1 −−=s . 

The pole 2 has the degree 2; the minimal realization has four states. 

 

Zeros:  the largest minor has the dimension 2.  Arrange again the pole polynomial to 

the denominator 
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Zeros  -15.07, -0.93  (both have the degree one).  Confirm with Matlab. 

 

 

Problem 4.  By considering the static system 
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prove that eigenvalues do not give a reliable view about the gain of a multivariable 

system.  What is a better alternative? 

 



Solution:  The eigenvalues of the matrix are both zero.  However, the input 

 Tu 10= gives the output  Ty 0100= .  So, at least in this input direction the 

eigenvalue  0 does not describe the system well.  The problem is that generally 

eigenvalues describe the gain only in the direction of the eigenvector.  Let ( )ii t,  be 

the eigenvalue-eigenvector pair related to the matrix G.  For the eigenvector as input 
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But let us calculate the singular values. 

 

By the Matlab command svd(G) or by calculating directly sqrt(eig(G’*G))  the 

singular values 100 and 0 are obtained.  The gain of the system is between these 

values, and the maximum gain (corresponding to the infinity norm of the transfer 

function) is 100. 

 

Note.  The singular values are obtained as )()( GGG H

ii  = ; the eigenvalues here 

are always real, because GG H
 is a hermitian matrix.  Also GG H

 is positive 

semidefinite, so that the eigenvalues are nonnegative. 

 


