
 

 

 
ELEC-E8116 Model Based Control Systems / solution 1 
 
 
Problem 1: 
 
Let f(x) be a scalar-valued function of the vector x and let A be a square matrix with 
an appropriate dimension. By using a simple example, study what kind of a function 
f(x) = AxxT  is. Prove that 
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when the gradient is considered to be a row vector (in the literature the gradient is 
sometimes regarded as a row vector and sometimes as a column vector). 
 
Solution 
General about differentiation of matrices:  Let [ ]Tn txtxtxtx )()()()( 21 = and 
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If f is a scalar-valued function of the vector x, the gradient can be defined to be either 
a row- or a column vector.  As a row vector 
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Let f be a multidimensional function [ ]Tm xfxfxff )()()( 21 = , where 

[ ]Tn txtxtxtx )()()()( 21 = .  Then the ”derivative” has the dimension nm×  and it is called 
the Jacobi matrix 
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To the problem:  Let 
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== , which is a quadratic function.  

In optimization the LQ-problem = linear system, quadratic cost. 
 

Now 
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Ax  and the derivative is the Jacobi matrix 
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1211)( .  Note that the derivative with respect to the vector x has been 

written as a row vector.  Now calculate the gradient of f and again consider it a row 
vector 
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On the other hand 
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which is the same result.  Hence )()( TTT AAxAxx
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Problem 2 
 
Now consider the gradient of  f(x) as a column vector.  Show by a simple example that 
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Solution 
Similar as in the previous problem.  The result matrices are transposes to those in the 
previous problem. 

 
 

Problem 3 
 
Show that ( )xAAx TT − =0  holds, when x is a vector and A a square matrix with an 
appropriate dimension.  
 
Solution 
First some basic results from matrix calculus.  With proper dimensions it holds 
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Note that with matrices as a rule  BAAB ≠ , ( ) 111 −−− +≠+ BABA  
Calculus with matrices in a symbolic form is essentially more difficult than with 
scalar quantities.. 
 
So, the claim is xAxAxx TTT = .  But this is a scalar, and its value does not change when 
the transpose is taken.  But the matrix calculus rules hold anyway and therefore 
 

( ) xAxAxxAxx TTTTT ==  as claimed. 
 
 
 
 
Problem 4 
 
Let the criterion to be minimized be given as 
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where ’ denotes the transpose.  Show that the square matrices P and Q can always 
be chosen as symmetric matrices.. 
 

Solution 
PxxxPPxxPxxPPxxPPPxPxx ')'(''')'(')''('' −+=−+=−+=  (compare to the previous 

problem) 
 
Hence  xPPxPxxxPPxPxx 
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But 'PP + and also 

2
'PP +  are symmetric matrices.  They can always be used instead of 

an arbitrary  P without changing the value of the expression.  The same holds 
naturally for Quu' . 

 
 
 



 

 

Problem 5 
 
Let A, B, C and D be  nxn, nxm, mxn, mxm matrices.  Prove the so-called matrix-
inverion lemma 
 

( ) 1−+ BDCA = 111111 )( −−−−−− +− CABCADBAA  
 

where it is assumed that all inverse matrices exist. 
   
Solution 
At first sight the inversion lemma looks quite complicated.  But is turns out to be 
valuable in many matrix calculations in control theory.  A good example is, when the 
least-squares estimation algorithm is changed in a recursive form. 
 
Let us start from the claim and multiply both sides with BDCA +     
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and an identity followed,  Ok.  (Note that since we started from the claim we must go 
through equivalences in order the proof to be sound.) 
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