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Question 1
u I Z £ Edit question ¥ Flag question

What is a correct description of PCA? Check all answers that apply.

Select one or more:
[J a. PCA is the decomposition of the covariance matrix of the data into the product of 3 matrices, two of which contain the eigenvectors and one of which contains the eigenvalues.
[J b. PCA consists in finding a change of basis such that the data covariance matrix is diagonal in that new basis.

Oec.

PCA consists in finding a change of basis such that the data covariance matrix is null in that new basis.

uestion 2 .
2 Question 3

What can PCA be used for? Check all answers that apply. ) . .
What are some risks when interpreting PCA? Check all answers that apply.

Select one or more:

Ua. Expanding the dimensionality of a low-dimensional dataset Select one or more:

O b. Denoising data [ a. PCA always yields a decomposition, even on random data, and the results of PCA can thus be overinterpreted.

[J c. Reducing dimensionality of a high-dimensional dataset [ b. Some important signals might only be present in the low-variance dimensions, which are typically discarded in PCA.
Question 4

£ Edit question

What are eigenvalues?

[J a. Eigenvalues are the vectors onto which to project the data to obtain the PC scores.

[J b. Eigenvalues populate the diagonal matrix of the PCA decomposition and correspond to the variance of the data projected onto the corresponding eigenvectors.



Explain to your neighbour (use sketches)

 What is PCA? What can it be used for? (3 min)

(switch roles)

* What is the Fourier transform? What can it be used for? (3 min)



Connection between PCA and Fourier transform @

PCA consists in finding a new basis such that the covariance between variables is null in that
new basis.
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Connection between PCA and Fourier transform @

Fourier transform is a change of basis, which re-expresses an input sequence
X into a new basis of sine and cosine functions (i.e. frequency domain):
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where X s the Fourier representation
Jisthe Fourier transform

X isthe input sequence

The real part (cosine wave) is denoted by a solid line, and the imaginary part (sine wave) by a dashed line.



Connection between PCA and Fourier transform

A stationary process is a process whose joint probability distribution
does not change when shifted in time:

let {x:}:cr be a stationary process

then

p(xt1—|—7'7 LtotTy 009 :Etn—|—7') — p(xt17xt27 ) xtn)
forall T € R
for all n € N

source: https://en.wikipedia.org/wiki/Stationary process



Connection between PCA and Fourier transform @

The covariance of a dataset of samples drawn from a (periodic) stationary process is
a circulant matrix:
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Connection between PCA and Fourier transform

When PCA decomposition is computed over a circulant covariance
matrix, the resulting eigenvector basis is the Fourier basis:
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Cov(X) =F*DF  where S = \W

k-v N=8
frequency

Conclusion: For any stationary process, performing Fourier transform is equivalent to

performing PCA (except that in Fourier transform the basis is known and does need to be

computed).




Outline of the course

1. Mean, Standard Deviation, Standard Error, Confidence Intervals, T-test

2. Fourier Transform, Wavelet Transforms, Spectrograms, High-pass, Low-
pass filters

3. Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD)

4. Clustering Methods
5. Linear Regression / Logistic Regression

6. Non-linear Methods: Independant Component Analysis, t-Stochastic
Neighbour Embedding, Random Forests, Deep Networks

7. Invited lectures from the biomedical industry



Definition of clustering

Clustering is grouping a collection of data points into subsets or “clusters”, such that the

points within each cluster are closer to one another than points assigned to different clusters.
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Algebraic view of clustering

Clustering consists in approximating a data matrix by the product of a centroid matrix and an

assignment matrix, which is a matrix with only one non-zero element per column:
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Clustering algorithms

* The number of possible partitions (i.e. grouping of points in clusters) grows very quickly with the
number of points. For example, for 4 clusters of 19 points, there are more than 10'° potential
partitions.

 Clustering algorithms are able to examine only a very small fraction of all possible partitions. The
goal of clustering algorithms is to identify a small subset that is likely to contain the optimal one,
or at least a good suboptimal partition.

* Such feasible strategies are based on iterative greedy descent: (1) an initial partition is specified;
(2) at each iterative step, the cluster assignments are changed in such a way that the value of the
criterion is improved from its previous value.

e There are many clustering algorithms, each with their advantages. In this lecture we will see two
commonly used algorithms: K-means and hierarchical clustering.




K-means clustering algorithm

K-means clustering starts with guesses for the ‘K’ cluster centers. Then it alternates the following
steps until convergence:

1) for each data point, the closest cluster center (in Euclidean distance) is identified;

2) each cluster center is replaced by the coordinate-wise average of all data points that are closest
to it (i.e., center of mass).
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source: https://en.wikipedia.org/wiki/K-means_clustering



K-means clustering in action

KMeans Iteration: 10 Total Within Cluster Sum of Squares: 30379

0 2 4 6 a 10
Kmeans Iterations

source: https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

How to choose the number of clusters ‘K’ in
K-means?

* Sometimes the number of centroids ‘K’ is imposed by the constraints
of your problem: e.g., you need to divide a dataset in ‘K’ streams for

parallel processing.

* Sometimes there is a natural number of clusters in your data. You can
find it by inspecting the clusters visually and deciding whether you
are subdividing your data into too many or too few clusters.

* Sometimes natural clusters appear, sometimes not. In all cases, a
clustering analysis can be useful.



Hierarchical clustering algorithm

Hierarchical clustering recursively merges a selected pair of clusters into a single cluster. This
produces a grouping at the next higher level with one less cluster. The pair chosen for merging
consists of the two groups with the smallest intergroup dissimilarity.

Raw data Hierarchical clusters
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source: https://en.wikipedia.org/wiki/Hierarchical_clustering
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Hierarchical clustering: linkage
® OJOJOOYCXT

Where is group ‘bc’
located?
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* Single linkage agglomerative clustering takes the intergroup dissimilarity to be
that of the closest (least dissimilar) pair.

» Complete linkage agglomerative clustering (furthest-neighbor technique) takes
the intergroup dissimilarity to be that of the furthest (most dissimilar) pair

* Group average linkage clustering uses the average dissimilarity between the
groups




Dendogram: definition

A dendogram is a binary tree representing the hierarchical clusters, such that the
height of each node is proportional to the value of the intergroup dissimilarity
between its two daughters.
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How to ‘cut’” a dendogram?

e Cutting the dendrogram horizontally at a particular height partitions the data into disjoint clusters represented
by the vertical lines that intersect it. These are the clusters that would be produced by terminating the
procedure when the optimal intergroup dissimilarity exceeds that threshold cut value. Groups that merge at high
values, relative to the merger values of the subgroups contained within them lower in the tree, are candidates
for natural clusters. Note that this may occur at several different levels, indicating a clustering hierarchy: that is,
clusters nested within clusters.
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Hierarchical clustering in action

Hierarchical Clustering Dendrogram
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source: https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/



https://dashee87.github.io/data%20science/general/Clustering-with-Scikit-with-GIFs/

Hierarchical Clustering vs. K-means

* The results of applying the K-means clustering algorithm depends on the choice
for the number of clusters to be searched and a starting configuration
assignment. In contrast, hierarchical clustering methods do not require such
specifications.

* The goal is sometimes to arrange the clusters into a natural hierarchy. Hierarchical
clustering involves successively grouping the clusters themselves so that at each
level of the hierarchy, clusters within the same group are more similar to each
other than those in different groups. It is up to the user to decide which level (if
any) actually represents a “natural” clustering in the sense that observations
within each of its groups are sufficiently more similar to each other than to
observations assigned to different groups at that level.



Steps to perform clustering on a computer

1.

Prepare your data into a matrix of size ‘samples’ x ‘features’.

Feed this matrix into a clustering algorithm (e.g., K-means or hierarchical
clustering)

Vizualise the clusters obtained (e.g., with a dendogram for hierarchical
clustering, or by superposing all elements of each cluster for K-means)

Adjust the clustering parameters according to your specific criteria (i.e.,
readjust ‘K’ in K-means, or adjust the vertical cut of the dendogram in
hierarchical clustering)



Case study 1: genetic analysis of tumor patients
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FIGURE 1.3. DNA microarray data: ezpression matriz of 6830 genes (rows)
and 64 samples (columns), for the human tumor data. Only a random sample
of 100 rows are shown. The display is a heat map, ranging from bright green
(negative, under expressed) to bright red (positive, over expressed). Missing values
are gray. The rows and columns are displayed in a randomly chosen order.

source: The Elements of Statistical Learning, Hastie, Tibshirani, Friedman (2017)

Example 4: DNA Expression Microarrays

DNA stands for deoxyribonucleic acid, and is the basic material that makes
up human chromosomes. DNA microarrays measure the expression of a
gene in a cell by measuring the amount of mRNA (messenger ribonucleic
acid) present for that gene. Microarrays are considered a breakthrough
technology in biology, facilitating the quantitative study of thousands of
genes simultaneously from a single sample of cells.

Here is how a DNA microarray works. The nucleotide sequences for a few
thousand genes are printed on a glass slide. A target sample and a reference
sample are labeled with red and green dyes, and each are hybridized with
the DNA on the slide. Through fluoroscopy, the log (red/green) intensities
of RNA hybridizing at each site is measured. The result is a few thousand
numbers, typically ranging from say —6 to 6, measuring the expression level
of each gene in the target relative to the reference sample. Positive values
indicate higher expression in the target versus the reference, and vice versa
for negative values.

A gene expression dataset collects together the expression values from a
series of DNA microarray experiments, with each column representing an
experiment. There are therefore several thousand rows representing individ-
ual genes, and tens of columns representing samples: in the particular ex-
ample of Figure 1.3 there are 6830 genes (rows) and 64 samples (columns),
although for clarity only a random sample of 100 rows are shown. The fig-
ure displays the data set as a heat map, ranging from green (negative) to
red (positive). The samples are 64 cancer tumors from different patients.

The challenge here is to understand how the genes and samples are or-
ganized. Typical questions include the following:

(a) which samples are most similar to each other, in terms of their expres-
sion profiles across genes?

(b) which genes are most similar to each other, in terms of their expression
profiles across samples?

c¢) do certain genes show very high (or low expression for certain cancer
g g
samples’?

We could view this task as a regression problem, with two categorical
predictor variables—genes and samples—with the response variable being
the level of expression. However, it is probably more useful to view it as
unsupervised learning problem. For example, for question (a) above, we
think of the samples as points in 6830-dimensional space, which we want
to cluster together in some way.



Case study 1: genetic analysis of tumor patients
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FIGURE 14.8. Total within-cluster sum of squares for K-means clustering ap-
plied to the human tumor microarray data.

The data are a 6830 x 64 matrix of real numbers, each representing an
expression measurement for a gene (row) and sample (column). Here we
cluster the samples, each of which is a vector of length 6830, correspond-
ing to expression values for the 6830 genes. Each sample has a label such
as breast (for breast cancer), melanoma, and so on; we don’t use these la-
bels in the clustering, but will examine posthoc which labels fall into which
clusters.

We applied K-means clustering with K running from 1 to 10, and com-
puted the total within-sum of squares for each clustering, shown in Fig-
ure 14.8. Typically one looks for a kink in the sum of squares curve (or its
logarithm) to locate the optimal number of clusters (see Section 14.3.11).
Here there is no clear indication: for illustration we chose K = 3 giving the
three clusters shown in Table 14.2.

TABLE 14.2. Human tumor data: number of cancer cases of each type, in each
of the three clusters from K-means clustering.

Cluster Breast CNS Colon K562 Leukemia MCF7

1 3 ) 0 0 0 0

2 2 0 0 2 6 2

3 2 0 7 0 0 0
Cluster | Melanoma NSCLC Ovarian Prostate Renal Unknown
1 1 7 6 2 9 1

2 7 2 0 0 0 0

3 0 0 0 0 0 0

We see that the procedure is successful at grouping together samples of
the same cancer. In fact, the two breast cancers in the second cluster were
later found to be misdiagnosed and were melanomas that had metastasized.
However, K-means clustering has shortcomings in this application. For one,
it does not give a linear ordering of objects within a cluster: we have simply
listed them in alphabetic order above. Secondly, as the number of clusters
K is changed, the cluster memberships can change in arbitrary ways. That
is, with say four clusters, the clusters need not be nested within the three
clusters above. For these reasons, hierarchical clustering (described later),
is probably preferable for this application.



Case study 1: genetic analysis of tumor patients
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FIGURE 14.12. Dendrogram from agglomerative hierarchical clustering with
average linkage to the human tumor microarray data.

Like K-means clustering, hierarchical clustering is
successful at clustering simple cancers together.
However it has other nice features. By cutting off
the dendrogram at various heights, different
numbers of clusters emerge, and the sets of clusters
are nested within one another.



Case study 1: genetic analysis of tumor patients

Secondly, it gives some partial ordering information about the samples.
In Figure 14.14, we have arranged the genes (rows) and samples
A (columns) of the expression matrix in orderings derived from
‘ hierarchical clustering.
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FIGURE 14.14. DNA microarray data: average linkage hierarchical clustering
has been applied independently to the rows (genes) and columns (samples), de-
termining the ordering of the rows and columns (see text). The colors range from
bright green (negative, under-expressed) to bright red (positive, over-expressed).



Case study 2: Understanding retinal coding
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Case study 2: Understanding retinal coding
cone rod
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~ 100 types of cells in the retina ~ 30 types of ganglion cells

- Multiple stages of processing in the retina
- A non-local processing
- A complex encoding of visual information



Case study 2: Understanding retinal coding
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Case study 2: Understanding retinal coding

Stimulus (luminance)
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Case study 2

The functional diversity of retinal
ganglion cells in the mouse

Tom Baden"?>3*, Philipp Berensb>%#*5#, Katrin Franke">%%*, Miroslav Romdn Rosén">%¢, Matthias Bethge!>>7 &
Thomas Euler’23

In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct
visual features in parallel for transmission to the brain. How many such ‘output channels’ exist and what each encodes
are areas of intense debate. In the mouse, anatomical estimates  range from 15 to 20 channels, and only a handful are
functionally understood. By combining two-photon calcmm lmagmg to obtain dense retmal recordmgs and unsuperwsed
clustering of the resultmg sample of more than 11,000 she 3

channels.

herefore, information channels from the mouse eye to the mouse brain are considerably
more diverse shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-
of-the-art artificial vision systems.

Nature 2016

Cluster no.

RGCs

OFF |

© ® N o O A~ N

14
— 15

=1
—18

Fast —[ 22

ON

26
I 27
28

—29

31
32
33

34
Slow 35

36
37

39

Uncertain RGCs' 40

41
42-46
47-49

OFF local, 0S
OFF DS
OFF step

] OFF slow

:|OFF alpha sust.
(ON-)OFF ‘JAM-B’ mix
OFF sust.

]OFF alpha trans.

OFF ‘mini’ alpha trans.

ON-OFF local-edge ‘W3’

:| ON-OFF local
6

7
]0N~0FF DS 1

ON-OFF DS 2
(ON-)OFF local, 0S
ON step

ON DS trans.

:| ON local trans., OS

} ON trans.

ON trans., large
ON high freq.
ON low freq.

j|0N sust.

ON ‘mini’ alpha
ON alpha

ON DS sust. 1
ON DS sust. 2
ON slow

] ON contrast suppr.

ON DS sust. 3

ON local sust., OS
OFF suppr. 1

OFF suppr. 2

Group no.

b Moving bars Nai\se C RF DSi osi
Chirp Colour Soma Diameter
(um?) (um)
BRI E  EE e e

1
2
3

[ 4a
4b

5a
5b
5¢

6
7

[ 8a
8

o
10

|:11a
11b

[12a
12b

17a
{17b
17c

[ 18a
18b
19
20

21

[ 22a
22b
23
24
25

26
27

[ 28a
28b
29
30

3la—e
32a-c

___;_—..___._.L'V*__‘A
,_J._.L_.__.N_L’V*_...J

e b b sl

A b il e

A b il e,

PPV S R N N N
S D Vel il Bl Al Al
e NS il . il

i
'ty
it
P
?z

%i

|

|

%

(uUGalGI
i

N

»
o
N
=}
o
o
IS
o
=}
o
=}
3
S}
o
3

|

H

A e o AT

i

B
ERbE BRI BB RS IR R

e

{

: PPPE RFPRRPPPPPPFRFPPPRPPEERPPFF

:\PPEP PEPPPPPPERRPPRRPPPFRFPPPPPR

2s 1s

N
»



Limitations and risks associated to clustering

e K-means clustering will always find clusters, even if they don’t
exist. Similarly, hierarchical clustering imposes hierarchical
structure whether or not such structure actually exists in the data.

e.g., here when K-means is applied with K = 3, it arbitrarily subdivides
a group of points in two clusters

* Classical clustering methods can be inadapted to the structure of
the data.

Note: advanced clustering methods exist, e.g. spectral clustering with
non-euclidean kernels, t-SNE embeddings
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Next lecture

* Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD) (part Il)



