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First Intermediate Exam

• First intermediate exam (IE1) on Thursday
19.10.2023, 14:00-16:00, Classroom exam, room T3 
(Computer building)

• 3 problems, max 5+5+5=15 points. Examination is 
done by ”pen and paper”. No extra material is 
allowed. Laplace tables are given, if they are needed.  
Calculators are allowed, but it is forbidden to use any
advanced properties in them (e.g. matrix calculus, 
Laplace transformations, connection to the net etc.)

• You do not have to register to the exam. 

• Note that during the examination week there are no 
lectures and no exercises of the course.  Only the 
exam.

http://elec.aalto.fi/en/


Fundamental Limitations in Control 

Design

Is there a limit to how good  compensator it is possible

to design for a given process?



3

Signal scaling:

Example. Room temperature dynamics
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z is the room temperature

x1 is the temperature of the heating radiator

w is the outdoor temperature (disturbance)

u is the temperature of the heating water (control)

The superscript f indicates that the variable is in physical

(unscaled) units.
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Constants 35,7.0 3421 ==== KKKK

Possible stationary point

CuCwCzCx ffff  6.50,10,20,501 =−===

In what follows the variables denote variations from the

steady state.
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Purpose of control: keep room temp within C1

the outdoor temp varies as C10 C20

The time constants of the radiator and room are 0.03 and 

0.7 (hours).

when

;control range
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Because the outdoor temperature cannot change 

arbitrarily fast, let us model it as  

fdwhere is within the range C10

Use the scalings 10/,,20/ fff ddzzuu ===
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Formalize the procedure:
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Physical system

f

d

f

u ddDuuD == ,scaling matrices

fffff eDerDrnDnyDyzDz ===== ,,,,

”D”:s are diagonal matrices, with which different

components of the variables are changed into the

same scale. 
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Scaled system variables
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After proper scaling the transfer functions

G and dG are fully comparable as functions of frequency.

Earlier that would have been impossible, because the

functions are related to different physical variables.
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Performance limitations:

• unstable systems

• systems with delay

• non-minimum phase systems

• limitations in control signal range

• system inverse
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Meaning of the system inverse

Let the system be
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(for simplicity, assume n = 0)

yFrFu yr −=controller

It follows that
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Perfect control, if 1=cG and 0=S

in which case )(1 wrGu −= −

Note.  If w were measurable, this result could have been

obtained directly from the system model.
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)(1 wrGu −= −

Generally:  

•perfect control means using the process inverse

•in practice, control methods are based on the search

for the (approximative) inverse model  

•this explains,why systems with delay and nonminimum

phase systems are difficult to control
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Ex.  Consider the system

dGGuy d+=

in which the variables have been scaled such that

1)(,1)(  tutd

Perfect control dGGu d

1−−=

A necessary (but not sufficient) condition for the exist-

ence of a control that compensates all allowed disturban-

ces is
  ,)()( iGiG d
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Let us return to the room temperature control example
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compensation Ok for all

frequencies

compensation not perfect

in high frequencies
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Loop gain:

1=+TS (consider the SISO-case)

-keep S small in low frequencies

-keep T small in high frequencies

But the loop gain 
yGF determines uniquely

these functions
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(approximative)
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The change should be fast (as S must grow, let it

happen fast in a small frequency range, in order

to force T to be small).

But the loop gain and phase are interconnected!
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Bode equations

For a minimum phase system it holds 
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Stability requirement:  if at the gain crossover frequency

the gain decreases

dB20 (per decade), the phase is (about)
2


 −

In order to have a positive phase margin, the gain must

not drop faster than 40 dB /decade

But this is against the above requirements!



17

Assume that the loop gain decreases as fast as     as tends to 

infinity.  Then the Bode integral holds :
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where ip :s  are the RHP poles of the loop gain )()( sFsG y

If there are no  RHP-poles, it follows

0)( log
0
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 diS These are again fundamental

limitations.

Sometimes the phrase ”waterbed formula” is used in the

literature

(here log means the natural logarithm (ln)).
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Note that the condition: gain must decrease as fast as     

as      tends to infinity holds for practically all physical systems. 

(Both elements in L are at least 1st order systems).
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Concequences:

1.  Let the process have an unstable pole 01 p

For the bandwidth the (approximative) bound

1pc 

can be set, in order to be able to control the unstable mode.

2.  Let the process have delay dT

For the gain crossover frequency c

d

c
T

1
 (appr)
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3.  Let the process have a nonminimum phase zero, z

2

z
c 

Ex. 1.  Control of the inverted pendulum
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Dynamic equations
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The poles are
l

g2
 (unstable)

The bandwidth should exceed lg /2

say, lg /22

It is seen that a short pendulum is more difficult to control

than a long one.

Ex. 2.  Process with delay
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Again, for the control it can be written

 wSrGGu c )1(1 −−= −

Perfect control 0,1 →→ SGc
is impossible, because

it would mean

)()(1

1 wresGu dsT
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which contains anticipation.

But choose ideally dsT

c eG
−

= dsT
eT
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= (= 1-S)

so that the delay term is cancelled from control equation.

;
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An ”ideal” sensitivity function is then
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For small frequencies

dTiiS  )(

Then the amplitude of the (ideal) sensitivity function is 

smaller than one in frequencies 

dT/1

This approximates the bandwidth, so that
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Ex.  Consider again the delay but now by means of the 

Padé-approximation
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But this transfer function has a non-minimum phase
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But by earlier results
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Interpolation constraints
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Let z be a  RHP zero of the loop transfer function L(z) = 0.

Then
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(SISO case)

(Interpolation condition 1)
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Let p1 be a RHP pole of the loop transfer function L,
1( )L p = 

Then
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