
Statistical Mechanics
E0415

2023, summary 4
Ising model, 2nd order phase transitions



Take home 3

Give an example of X and Y that are correlated but there is no causal 
relation:

""Average yearly temperature and inflation for the last 100 years.

Obesity and type 2 diabetes."

Take a (time) series of the binary kind...:
"The series would be correlated if there is any pattern so that one could predict (with a success rate 
greater than 50%) the next number by looking at the previous ones.”



Take…
Take instead a series like this...:
 “The series will approach a random state of equilibrium with zero correlation. Eventually after along 
enough time the initial state does not affect the resulting state which means the random fluctuations 
of coin flips and the initial state would decay in the same way meaning Onsager’hypothesis holds. ”

As a final remark, try playing the game..:
“Results of the game: 203 key presses, final balance 987.6, % guessed: 54%, which is practically 1 sigma away 
from pseudorandom generators: I am not statistically worse than a random generator yay! The progression of the 
game was interesting: I started by trying to be random for each key press, this did not work, and I was losing 
almost 60% of the time. At around iteration 160 I changed my strategy to trying to come up with 5 key presses at 
a time before typing any of them, this suddenly started making the algorithm guess wrong a lot (to be expected, 
the algorithm is based on previous patterns so a changing strategy will mess it up for a while, but if the sequence 
is not random, it should adapt to the new pattern in time to still guess right most of the time)..”



ABC of phase transitions
Today’s main topics:

• The paradigmatic statistical mechanics model: the Ising model
• How to solve statistical mechanics on the computer – yet another 

connection to stochastics (of/or Markov chains)
• Coarse-grain the Ising: simplest Ginzburg-Landau theory, the phase 

transition in GL.
Material: Sethna Ch 8, Chaikin-Lubensky, Principles of Condensed 
Matter Physics, Ch 4 (4.0, 4.2, 4.3 upto 4.3.18)



Meet the Ising model
• Lattice model, with Hamiltonian

• These details dictate the physics: J (coupling), H 
(external field), sum over (NN) interactions, 
geometry.
• Sign of J: (anti)ferromagnetic. Trees, 1D 

(solvable), 2D (barely solvable), 3D (not solvable).
• Add disorder (RF [H] (GP…), RB (J), SG (J)), make J 

long-ranged, AF in a triangular lattice 
(frustration)….



Ising model: (some) uses
Magnetism (parameters from 
microscopic detail!).
Binary alloys: understand the 
energy from the atomistic 
configuration (NN, NNN…).
Liquid-gas transition: what 
happens in the phase diagram 
close to the critical point (liquid-
gas).



How to solve the Ising model?
Emulate the thermal evolution on 
a computer: Heat Bath algorithm.
Pick a spin (at random). 
Compute the cost in energy for 
having it up/down ΔEup/down.
Pick the direction at random using 
the right Boltzmann weights.
(This means we do a Markov 
Chain over the spin states).

Advanced numerical methods:
Cluster algorithms…
Parallel tempering…
Ground-state methods for 
disordered systems (low 
temperatures: unique ground 
state for each system)…
Special computers (!).



Markov chains/fields (in general)
Properties of (memoryless) 
processes for the evolution of the 
occupation probabilities, 
Require a steady-state, and 
conservation of probability.
Ergodic (finite convergence time) 
chains have a single steady-state 
(Frobenius-Perron theorem).
Detailed balance: convergence 
assured.



Example #1 of cluster algorithms 
• Swendsen and 

Wang 1989 [PRL 
56 (87), 86]: 
update clusters 
not single spins.
• Does this give the 

correct 
thermodynamics?

Thx to K. Rummukainen, HY



Check it out
Showing that the SW 
algorithm exhibits 
detailed balance 
(between A and B) 
follows essentially 
from the fact that the 
intermediate ”C” after 
the flip is arbitary and 
compatible with both.



Wolff cluster algorithm (PRL 62 (89), 361)

Autocorrelation function



Order parameters & Ginzburg-
Landau
Inside a phase, an OP varies slowly but 
how do we detect the phase changes? 
(Example: magnetization for the Ising 
model in the FM phase).
GL: coarse-grain the system into patches 
of “large” size though smaller than the 
correlation length. Look, at what the FE 
looks like (and find the right 
normalization or partition function to 
get the FE right).



What is GL theory?
Z sum over all configurations m, 
thus a path integral.
Conditions on the FE: locality (in 
m), symmetries (rotation, 
translation: original lattice), Z2-
symmetry (spin flips, we do now 
the Ising model), analyticity 
Result (H breaks the parity 
symmetry, “-Hm”) reads then:

See Chaikin and Lubensky



Consequences:
Mean-field solution (m constant): a 
2nd order phase transition 
(continuous) related α2 and the 
critical temperature. m(T,H) (B in the 
figure).
Similar arguments are used 
(applying the GL-theory) to 
superconductivity and to liquid 
crystals (nematic-isotropic 
transition, where different 
symmetry gives an extra α3 term).



Application of GL: domain wall
In the ordered phase 
go from one “domain” 
to another: Domain 
Wall. GL gives the 
energy and shape.
Applications: disorder, 
roughening… Lower 
critical dimension for 
order to be present. 



What did we learn?
GL model: some “critical exponent” describing the 
behavior of quantities close to the critical temperature.
On general grounds, these are all not independent. 
Rescaling of time, space (correlation time, length), 
response to an external field is why.
How does one now compute the exponents? 
“Renormalization group” is the answer (K. Wilson, Nobel).



Homework



Take home
• Take home (Sethna Chapter 8 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of Condensed 

Matter Physics, Ch. 4.1-4.3.18). 

Read the chapter, and the parts of Ginzburg-Landau theory.  Check also the cluster Monte Carlo algorithms (the web is full of 
lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Ising model as the paradigm of statistical physics and phase transitions. The book discusses the model 
and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the Ising model 
(and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a phase diagram 
like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https://link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model on a 
2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#Our%20internships for summer jobs)

https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships

