Statistical Mechanics
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2023, summary 4

Ising model, 2nd order phase transitions



T'hiz lecture looks at the classical measures of correletions and their decay. We shall

ret back to thess topics later on, but you should resd through the chapter and think of

conditional probabilities. Read first the Chapter and check then the lecture slides again

T'he take home consists of answering to the following questions:

Give an example of X and Y that are correlated but there is no causal relation (X because
a e O m e of ¥ or X because of Y happened before) between them.

I'ske a (time) series of the binary kind 0110110001000111.... (or subtract -1/2 from all the

values so that the average might becomse zero). When would this be correlated?

I'ske instead & series like this: . 00001111101(...)110000.... This is clearly not a random

one. Now start tossing a coin (071} and replace according to each toss one of the values

with the new one. Does this correspond to the Onsager hypothesis and why? If the coin

is biased, does the process relate to linear response?

As a finel remark, try playing the game found at bttps: //vew  expunctis. com/2019/03/
07/Not-so-random.bhtnl. How random were you sble to be?

Give an example of X and Y that are correlated but there is no causal
relation:

Average yearly temperature and inflation for the last 100 years.

Obesity and type 2 diabetes."

Take a (time) series of the binary kind...:

"The series would be correlated if there is any pattern so that one could predict (with a success rate
greater than 50%) the next number by looking at the previous ones.”



Take...

Take instead a series like this...:

“The series will approach a random state of equilibrium with zero correlation. Eventually after along
enough time the initial state does not affect the resulting state which means the random fluctuations
of coin flips and the initial state would decay in the same way meaning Onsager’hypothesis holds. ”

As a final remark, try playing the game..:

“Results of the game: 203 key presses, final balance 987.6, % guessed: 54%, which is practically 1 sigma away
from pseudorandom generators: | am not statistically worse than a random generator yay! The progression of the
game was interesting: | started by trying to be random for each key press, this did not work, and | was losing
almost 60% of the time. At around iteration 160 | changed my strategy to trying to come up with 5 key presses at
a time before typing any of them, this suddenly started making the algorithm guess wrong a lot (to be expected,
the algorithm is based on previous patterns so a changing strategy will mess it up for a while, but if the sequence
is not random, it should adapt to the new pattern in time to still guess right most of the time)..”



ABC of phase transitions

Today’s main topics:

* The paradigmatic statistical mechanics model: the Ising model

* How to solve statistical mechanics on the computer - yet another
connection to stochastics (of/or Markov chains)

* Coarse-grain the Ising: simplest Ginzburg-Landau theory, the phase
transition in GL.

Material: Sethna Ch 8, Chaikin-Lubensky, Principles of Condensed
Matter Physics, Ch 4 (4.0, 4.2, 4.3 upto 4.3.18)



Meet the Ising model

* Lattice model, with Hamiltonian

H = —Z.fﬁ'i.‘-ﬂj — HZ.‘:'!-.

1) [
* These details dictate the physics: J (coupling), H

(external field), sum over (NN) interactions,
geometry.

* Sign of J: (anti)ferromagnetic. Trees, 1D
(solvable), 2D (barely solvable), 3D (not solvable).

e Add disorder (RF [H] (GP...), RB (J), SG (J)), make J
long-ranged, AF in a triangular lattice
(frustration)....




Ising model: (some) uses

Magnetism (parameters from
microscopic detail!).

Binary alloys: understand the
energy from the atomistic
configuration (NN, NNN...).

Liquid-gas transition: what
happens in the phase diagram
close to the critical point (liquid-
gas).
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Fig. 8.4 P-T phase diagram for
a typical material. The solid-liquid
phase boundary corresponds to a
change in symmetry, and cannot end.
The liquid-gas phase boundary typi-
cally does end; one can go continuously
from the liquid pl to the gas phase
by increasing the pressure above F., in-
creasing the temperature above T:, and
then lowering the pressure again.

Fig. 8.3 The Ising model as a bi-
nary alloy. Atoms in crystals natu-
rally sit on a lattice. The atoms in al-

are made up of different elements
(here, types A and B) which can ar-
range in many configurations on the
lattice.
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Fig. 8.5 H-T phase diagram for

the Ising model.
temperature T, there
and a down-spin ‘phs

a jump in magnetization at H = 0.
Above T, the behavior is smooth as a

function of H.




How to solve the Ising model?

Emulate the thermal evolution on  Advanced numerical methods:

a computer: Heat Bath algorithm. | ster algorithms...

Pick a spin (at random). Parallel tempering...

Compute the cost in energy for Ground-state methods for

having it up/down AE .- disordered systems (low

Pick the direction at random using  temperatures: unique ground
the right Boltzmann weights. state for each system)...

(This means we do a Markov Special computers (!).

Chain over the spin states).



Markov chains/fields (in general)

Properties of (memoryless)
processes for the evolution of the
occupation probabilities,

¢ Time evolution. The probability vector at step n + 1 is
pn+1)= Z Fgop,(n), pin+1)=P- p(n). (8.6)
CE

¢ Positivity. The matrix elements are probabilities, so

Require a steady-state, and — i
conse rvation Of pro ba bility. . (.::DI]EEI'\"Ht-iDn of probability. The state & must go somewhere,
Ergodic (finite convergence time) 2 et
Chains have a Single Steady_state e Not symmetric! Typically Ps, # Pas.

(Frobenius-Perron theorem).

Detailed balance: convergence P.sp% = Paap?
assured.



Example #1 of cluster algorithms

Beginning with an arbitary configuration s;, one SW cluster update cycle

* Swendsen and s:
Wang 1989 [PRL 1. Inspect all nn-states s;, s;. If s;, = s;, create a bond between sites
56 (87), 86] i, j with probability p = 1 — exp(—2/3) (otherwise no bond).
update clusters 2. Construct clusters = sets of points co.nnected by bonds.
. . 3. Set each cluster to a random value +1.
not single spins.
o0
* Does this give the o ry
correct T hd Fs o
thermodynamics? & -0

Thx to K. Rummukainen, HY



Check 1t out

ShOWing that the SW Is this a valid update? It satisfies

algorithm exhibits a) ergodicity (obvious) |

detailed balance b) detailed balance: ;:;—i‘ij — oxp —3(Ep — E4)?

(between A and B) Proof: consider A — C — B, where C is some bond configuration

fOI IOWS essenﬁa”y compatible with both A and B. Since the clusters in C are indepen-
dent, P(C — A) = P(C — B) = 1/2Ne,

from the fact that the N, el (L

. . A= L p\1l—=p, 4 /

intermediate "C” after BB )~ (=gt — “PlA(Es — Ea)]

where d 4 p are the numbers of similar nn-states which are not con-

the ﬂ P15 arblta ry and nected by a bond. The last step comes from £y = dimxV —2(b+d,).
COmpaﬁble W|th both Thus A — C — B and B — C — A satisfy detailed balance for arbi-

trary C, and the total transition probabilities A — B, B — A must do
it also.



Wolff cluster algorithm (pRL 62 (89),

Principle: do the cluster decomposition as in S-W, but invert (‘flip’) only
one randomly chosen cluster! In practice:

1. Choose random site i.

2. Study neighbouring sites ;. If s; = s;, join site j to cluster with
probability p = 1 — exp(—203).

3. Repeat step 2 for site j, if it was joined to the cluster. Keep on doing
this as long as the cluster grows.

4. When the cluster is finished, invert the spins which belong to it.

e Usually slightly more effective than S-W (the average size of the clus-
ters is larger. Why?).

e The minimum cluster size = 1, maximum = volume.

e Nicely recursive.

e Satisfies detailed balance.
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Order parameters & Ginzburg-
Landau

Inside a phase, an OP varies slowly but
how do we detect the phase changes?
(Example: magnetization for the Ising
model in the FM phase).

GL: coarse-grain the system into patches |
of “large” size though smaller thanthe  m(x) = 7> _; s o

correlation length. Look, at what the FE

looks like (and find the right gl

normalization or partition function to

get the FE right). g




What is GL theory?

Z sum over all configurations m,
thus a path integral. / Din(x) e~FFim)

Conditions on the FE: locality (in

m), symmetries (rotation, o—BF[m(x))

translation: original lattice), Z,- plm(x)] = —
symmetry (spin flips, we do now
the Ising model), analyticity

Result (H breaks the parity o n . |
symmetry, “-Hm”) reads then: )l _/(/ ’ [

See Chaikin and Lubensky

dy 5("12(T)!'?22 + l("l4(T)f'??4 + 50 (T)(Vm)* +



Consequences:

Mean-field solution (m constant): a
2" order phase transition

(continuous) related a, and the
critical temperature. m(T,H) (B in the
figure).

Similar arguments are used
(applying the GL-theory) to
superconductivity and to liquid
crystals (nematic-isotropic
transition, where different

symmetry gives an extra a, term).

; 1
ay(1) ~ =T

ao(T) ~ (T =1T.,)

one—phase|region

two—phase
— .

M

/ two—phase|region
4

(b)




Application of GL: domain wall

In the ordered phase
go from one “domain”
to another: Domain
Wall. GL gives the
energy and shape.

Applications: disorder,
roughening... Lower
critical dimension for
order to be present.

—— = aom(X) + aym’(x) — YV m(x
5 () 2 (X) + agm”(X) — 1 (x)
OF ;
= = = -1..V2-m = aom + « 4-7;3‘3
0m i)
X d>m

W ol
Y55 — Qam + agm
dx=

z—X
m = my tanh i W =.




What did we learn?

GL model: some “critical exponent” describing the
behavior of quantities close to the critical temperature.

On general grounds, these are all not independent.
Rescaling of time, space (correlation time, length),
response to an external field is why.

How does one now compute the exponents?
“Renormalization group” is the answer (K. Wilson, Nobel).



Homework

3.2 Damped oscillator (Sethna 10.3 p. 235) HOMEWORK (5 points)

Let us explore the Auctuating masson-s-spring. The coupling of the marroseopic motion
to the internal degrees of freedom eventually damps any initial macroscopic oscillation;
the remaining motions are microscopic thermal fluctuations. These Auctuations can be
importent, however, for nanomechanical and biclogical systems In addition, the damped
harmonic cscillator is & clazsic model for many atomic-scale physical processes, such as
dielectric loss in insulstors. Consider a demped, simple harmonic oscillator, foroed with
an external foroe f, obeying the equation of motion

420 an i)
am = el T+ ()

fa) Suscepfibibity. Find the AC suscepfitilify y(w) for the oscillafor: Flof x'(w) and x"(w)
forwy =m =1 gnd v =022 5 (Hint: Founier transform the equation of motion, and
solve for @ in terms of [

(5] Cousalify and erifical damping. Check, for posifive damping v, fhaf yowr y(w) {2 consal
(it) =0 for £ < 0), by cromining the sngulerdics in the compler w plane (Section 108
in Sefkna)l Al whal value of v do Lhe poles begin fo st on the imaginary aris¥ The system
is overdamped, and the oscillations disappsar, when the poles are on the imaginary axis.

(e} Dizripafion and susceplibilify. Civen a forcing f{f) = Acos(wi), solve the epualion and
caleulate @(t). Caleulate the avernge power dizszipated by infegrafing youwr resulfing formula
for fdffdt. Do your answers for Ehe power and x" agree with Ehe general formala for power
dissipation, eqn 10.57 in Sethna (p(w) = 2oLy )7

(d) Correations and thermal equilibrium. Use the fluctualion-disspafion theorem fo calon-
late the correlafion fundion Clw) from x"(w) x"(w) = %I’J w), see egn 1065 in Sethna
p 289), where

Ot — ) — (B(E)0(e)). (®)

Find the cqual-fime correlation function C(0) = (67}, and show that if salisfies the equipar-
fifion theorem.  (Hints: Our oscillator s in a potential well V(#) = Imudf®. Write
(Wl — w?)? + C%? = (g — o + iCw)(wd — w? — iCw) and do contour integration if
yvou really, reslly like it. Or you can trust that the integral mives

i 1 — T r
du —"(w)e™" — ——, ey

Ll TTE

as ¢ — (. Caleulating these kinds of contour integrals is out of the scope of this coume. )



Take home

* Take home (Sethna Chapter 8 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of Condensed
Matter Physics, Ch. 4.1-4.3.18).

Read the chapter, and the parts of Ginzburg-Landau theory. Check also the cluster Monte Carlo algorithms (the web is full of
lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Ising model as the paradigm of statistical physics and phase transitions. The book discusses the model
and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the Ising model
(and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a phase diagram
like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https.//link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model on a
2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#0ur%20internships for summer jobs)



https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships

