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How to establish causality between two
variables?

e For drugs and cures: randomized trials (drug vs. placebo)

* For dangerous substances:
- correlational studies, controlling for all other factors as much as

possible (e.g. socio-economic status, diet, environmental factors,
profession)

- randomized trials on animals (substance vs. placebo)

 Demonstrate a plausible mechanism explaining the cause-and-effect



How to establish causality between two
variables?

* Example of a plausible mechanism for how smoking can cause lung
cancer
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Link between nicotine addiction and lung cancer via tobacco smoke carcinogens and carcinogenesis.

Adapted from: Hecht SS. Tobacco smoke carcinogens and lung cancer.25

7-MG, 06-MG = 7-methylguanine, 06-methylguanine; DNA = dioribonucleic acid; NER = nucleoside excision repair; BER

= base excision repair.

Lung Cancer

Tobacco carcinogens are metabolised by cytochrome P-450 enzymes to make them readily excretable.
Lipoxygenase, cyclooxygenase, myeloperoxidases, and monoamine oxidases may also be involved,
although infrequently. The oxygenated intermediate metabolites undergo subsequent transformations
(detoxification and secretion) by glutathiones, sufatases, or uridine-5’-diphosphate-glucuronosyltransferases
(U5'DPGT).25 A few of the metabolites generated during these processes react with the deoxyribonucleic
acid (DNA) to form covalent binding products called DNA adducts in a process called metabolic activation.
Carcinogens like polcyclic aromatic hydrocarbons (PAH) and 4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK) require metabolic activation to exert their carcinogenic effects. The carcinogenic
metabolites of PAH-benzopyrenes (i.e. 7,8 diol 9,10 epioxides) and nicotine-derived nitrosamine ketone
(NNK or NNAL) react with DNA to form adducts. Alpha-hydroxylase converts methyl adducts from the
former agent to form 7-methylguanine or O6 methylguanine. The damage may be repaired, or apoptosis
may ensue. Miscoding may result in permanent mutations, including K-Ras, p53, p16, fragile histidine
triad protein (F-HIT), or unknown mutations, which results in either the suppression of tumour suppressor
genes or the activation of oncogenes. Not all smokers get lung cancer, but under 20% do. Susceptibility to
the development of cancer depends on the balance between metabolic activation and detoxification of
potential carcinogens in smokers [Figure 1].25



Outline of the course

=

Mean, Standard Deviation, Standard Error, Confidence Intervals, T-test

Fourier Transform, Wavelet Transforms, Spectrograms, High-pass, Low-
pass filters

Covariance and Principal Component Analysis (PCA)
Clustering Methods

Pearson Correlation, PCA and SVD

Linear Regression / Logistic Regression

Non-linear Methods: Independant Component Analysis, t-Stochastic
Neighbour Embedding, Random Forests, Deep Networks

8. Oral exam preparation / Invited lectures from the biomedical industry
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Example of linear regression: predicting state-wide @
cancer prevalance from cigarette consumption
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source: https://prezi.com/mqgzonnaOebvu/regression-in-biomedical-engineering/



Linear regression : definition

Y Linear regression predicts the value of an
output variable Y based on the value of an
input variable X, assuming a linear relationship
between X and Y:

Y =0xz; +

where X; isthe input variable for sample i

Yi is the output variable for sample i

Yi is the prediction for sample i

5 is the intercept of the linear fit

0 X 6 s the slope of the linear fit



Linear regression . optlmlzatlon criterion

Y, Linear regression finds 3 and 6 such that the
mean squared error (MSE) is minimized* :

1 N

Lop = 57 > Wi —m)?

1=1

where [,e,g is the loss function (to be minimized)

Yi  is the output variable for sample i
Yi;  is the prediction for sample i

N is the number of samples

*cf. supplementary slides for solution



Multiple linear regression

v If there are more than one input variables, the

process is called multiple linear regression. Like
in simple linear regression, we seek the linear

function of the inputs:

. —

that minimizes the mean squared error loss
function™:

1 N
_ E : )2
LG 5= N '_l(yz i)

*cf. supplementary slides for solution



Multiple linear regression (algebraic view)
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Logistic regression : history @

History |edit]

There have been several efforts to adapt linear regression methods to a domain where the output is a probability value, (0, 1), instead of any real number
(—o0, +00). In many cases, such efforts have focused on modeling this problem by mapping the range (0, 1) to (—o0, +00) and then running the linear
regression on these transformed values. In 1934 Chester litner Bliss used the cumulative normal distribution function to perform this mapping and called
his model probit an abbreviation for "probability unit";.[2] However, this is computationally more expensive. In 1944, Joseph Berkson used log of odds and
called this function logit, abbreviation for "logistic unit" following the analogy for probit:[°!

6
Mathematically, the logit is the inverse of the standard logistic function o(z) = 1/(1 + e *), so the 5

logit is defined as
2

. = p
logitp =0 1(p) =1In for pe(0,1).
() =In (0,1) o—
Because of this, the logit is also called the log-odds since it is equal to the logarithm of the odds -2
1 where p is a probability. Thus, the logit is a type of function that maps probability values from -4
—-D

-6

(0,1) to real numbers in (—o0, +00),['] akin to the probit function.
Plot of logit(x) in the domain of 0 to 1, where the &

base of the logarithm is e.

source: https://en.wikipedia.org/wiki/Logit H



Logistic regression : definition

Logistic regression models the probability of an event taking place by having the
log-odds for the event be a linear combination of the input variables:

p(g; = 1) 7
logll—p(y?:l)] =10 mth

The loss function to optimize is given by the negative log-likelihood of the observed
data as a function of the predicted distribution™:

N

Lgg=— Z lyilog(p(yi = 1)) + (1 — y;) log(1 — p(7: = 1))]

When the output variable is binary {0,1}, logistic regression is the correct tool to use

12
*cf. supplementary slides for algorithm



Example of simple logistic regression

The table shows the number of hours each student spent studying, and whether they passed (1) or failed (0).

Hours (xx) | 0.50 0.751.00 | 1.25 | 1.50 | 1.75 1.75 2.00 |2.25 | 2.50 2.75 3.00 3.25 3.50 | 4.00 | 4.25|4.50 4.75 5.00 | 5.50
Pass(yy |lO 'O o0 o0 o0 O 1 (0 |1 0 |1 0 1 0o 1 1 |1 |1 |1 |1

Probability of passing exam versus hours of studying

1.00- L] L] L] [ ] [ ] [ ] [ ] - L[] [ ]
£075-
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o 0.25-
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1 2 3 4 5

Hours studying

13



10 20 30

0

04 08

0.0

50 100

0

Case study for multiple logistic regression:
the South African heart disease data
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Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried
out in three rural areas of the Western Cape, South Africa (Rousseauw et
al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data represent
white males between 15 and 64, and the response variable is the presence or
absence of myocardial infarction (MI) at the time of the survey (the overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).

FIGURE 4.12. A scatterplot matrix of the South African heart disease data.
Each plot shows a pair of risk factors, and the cases and controls are color coded
(red is a case). The variable family history of heart disease (famhist) is binary
(yes or no).

14



10 20 30

0

00 04 08

50 100

0

Case study

00 04 08

famhist

obesity

220

160

100

15 25 35 45 2 6 10 14

40

20

TABLE 4.2. Results from a logistic regression fit to the South African heart
disease data.

Coefficient Std. Error Z Score

(Intercept) —4.130 0.964 —4.285
sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034

1d1 0.185 0.057 3.219

famhist 0.939 0.225 4.178
obesity -0.035 0.029 —1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

We fit a logistic-regression model by maximum likelihood, giving the
results shown in Table 4.2. This summary includes Z scores for each of the
coefficients in the model (coefficients divided by their standard errors); a
nonsignificant Z score suggests a coeflicient can be dropped from the model.
Each of these correspond formally to a test of the null hypothesis that the
coefficient in question is zero, while all the others are not (also known as
the Wald test). A Z score greater than approximately 2 in absolute value
is significant at the 5% level.

There are some surprises in this table of coefficients, which must be in-
terpreted with caution. Systolic blood pressure (sbp) is not significant! Nor
is obesity, and its sign is negative. This confusion is a result of the corre-
lation between the set of predictors. On their own, both sbp and obesity
are significant, and with positive sign. However, in the presence of many

other correlated variables, they are no longer needed (and can even get a
negative sign).
15



Case study (3)
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At this stage the analyst might do some model selection; find a subset
of the variables that are sufficient for explaining their joint effect on the
prevalence of chd. One way to proceed by is to drop the least significant co-
efficient, and refit the model. This is done repeatedly until no further terms
can be dropped from the model. This gave the model shown in Table 4.3.

TABLE 4.3. Results from stepwise logistic regression fit to South African heart

disease data.

Coeflicient Std. Error Z score

(Intercept) —4.204 0.498 —8.45
tobacco 0.081 0.026 3.16

1d1 0.168 0.054 3.09

famhist 0.924 0.223 4.14

age 0.044 0.010 4.52

How does one interpret a coefficient of 0.081 (Std. Error = 0.026) for
tobacco, for example? Tobacco is measured in total lifetime usage in kilo-
grams, with a median of 1.0kg for the controls and 4.1kg for the cases. Thus
an increase of 1kg in lifetime tobacco usage accounts for an increase in the
odds of coronary heart disease of exp(0.081) = 1.084 or 8.4%. Incorporat-
ing the standard error we get an approximate 95% confidence interval of

exp(0.081 & 2 x 0.026) = (1.03, 1.14).



Sources of misinterpretation of the results of
a regression analysis

1. Positive linear coefficient @ on an input variable # causation
(because in general correlation does not imply causation)

2. Conversely, a small regression coefficient for an input variable does
not mean that this variable is not causally related to the output
variable. It might simply be less correlated to the output variable
than other input variables and thus ignored in the regression.

3. Statistical significance of the predictions # strong predictive power
(because statistical significance # effect size significance)



The Overfitting Problem

Definition of overfitting:
* Predictions are good on the training dataset, but poor on new unseen data

Overfitting typically happens when:
* the dataset does not contain enough samples to properly learn the regression and/or
* the number of input variables (i.e. features) is too large to properly learn the regression

To detect overfitting:
* split your dataset into a training and validation set (see next slides)

* compute cross-validation predictions and compare them to training set predictions
(worse performance on the validation set means overfitting)

To prevent overfitting:

* use regularization techniques, which consist in adding extra constraints on the regression
problem based on what you know from the data (see examples in next slides)




To detect overfitting, separate data into
training, validation and testing sets

* Training Dataset: the sample of data used to fit the model.

 Validation Dataset: the sample of data used to provide an evaluation of a model
fit on the dataset while tuning model hyperparameters.

* Test Dataset: The sample of data used to provide an evaluation of a final model
fit on the dataset.

source: https://machinelearningmastery.com/difference-test-validation-datasets/



Strategies to create a validation set when you
don’t have a lot of data

 k-fold strategy: randomly divide the dataset into k groups or folds of
approximately equal size. The first fold is kept for testing and the model is trained
on k-1 folds. The process is repeated K times and each time different fold or a
different group of data points are used for validation.

* Leave-one-out strategy: K-fold cross validation taken to its logical extreme, with K
equal to N, the number of data points in the set. That means that N separate
times, the function approximator is trained on all the data except for one point
and a prediction is made for that point.



Examples of regularization techniques

1. Ridge regression (i.e. L2 penalty)
2. LASSO regression (i.e. L1 penalty)

3. Principal component regression



1. Ridge regression (L2 penalty)

We seek to mimize the loss:

N p
1 .
['775 = N E (yz — %‘)2 + A g 932- where ZZ@
i=1 j=1 ;
| Y ) ‘_V_’

L2 penalty N

p

Mean squared error

0;

is the output variable for sample i

is the prediction for sample i
is the number of samples

is the number of input variables

is the coefficient of the regression
for each input variable (i.e. slope)

is the trade-off parameter, balancing
the minimization of the MSE and

the penalty term on the coefficients
(also called Lagrangian)



1. Ridge regression (L2 penalty)

We seek to mimize the loss:

N p

L— _ 1 (i — 73)* + A 0> n
9 75 - N y'l, y’L ] Where (2
1 =1 71=1 :&\’L

\ Y ) ‘_V_’
Mean squared error L2 penalty N
p
How to choose the hyperparameter lambda? Hj

=> by trial-and-error on the validation set performance

is the output variable for sample i

is the prediction for sample i
is the number of samples

is the number of input variables

is the coefficient of the regression
for each input variable (i.e. slope)

is the trade-off parameter, balancing
the minimization of the MSE and
the penalty term on the coefficients

(also called Lagrangian)
23



2. LASSO regression (L1 penalty)

We seek to mimize the loss:

N p
1 . o | .
£7 3 — N E (yz — yi)Q + )\ E ’(93‘ where Yi isthe output variable for sample i
1=1 J=1 Y; is the prediction for sample i
\ Y J | Y J
Mean squared error N is the number of samples

L1 penalty

D is the number of input variables

0 g s the coefficient of the regression
for each input variable (i.e. slope)

)\ is the trade-off parameter, balancing
the minimization of the MSE and
the penalty term on the coefficients
(also called Lagrangian)



When to prefer LASSO vs. Ridge regression

Lasso regression
(L1 penalty)

Ridge regression
(L2 penalty)

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |f1| + |B2| < t and B3 + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

source: The Elements of Statstical Learning, Hastie, Tibshirani, Friedman (2017)
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When to prefer LASSO vs. Ridge regression ®

Lasso regression Ridge regression
(L1 penalty) (L2 penalty)
92 [} 92 Iy
91 91

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and B + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

Prefer LASSO regression when you
believe that some features are not
predictive of the output and can be
ignored.

Prefer ridge regression when you
believe that directions in feature
space will little variance are not very
predictive of the output variable
(e.g., too noisy).

Tip: try both regularizations and see

what works best on the validation
set!

26



3. Principal Component Regression

A. Apply PCA to the dataset X, and retain only the scores
corresponding to the k first dimensions of most variance
(k can be chosen by cross-validation).

B. Fit regression to these truncated scores.

Use principal component regression as an alternative to ridge regression, when you

believe that directions in feature space with little variance are not very meaningful or
noisy.

27



Steps to perform a regression analysis on a ¢

computer
1. Separate the data X and Y into a training set and a validation set

2. Compute the regression fit using an existing function from the the
computer and obtain the slope and intercept parameters of the fit

3. Test your regression performance on the validation set

4. if you find that the regression overfits to the training set, try
different regularization methods (e.g., LASSO, ridge, principal
component regression)



Next lecture on Oct 24

* Non-linear methods for data analysis



Supplementary material



Solution to linear regression

1 1
MSE:NZ — §:)? NZ (y; — 0z;)?

N

1
Optimal #* = argmin MSE = argmin — Z(yz — 0z;)?
0 o N i=1

To minimize MSE, we solve for where its gradient is O:

N N N
M E_ 2
uiill S e i 0m)zi=0 203 a7~ aii =0
i=1 i=1 =1
N
= OMsE = —N 2
2im1%;

source: Neuromatch academy,
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Angi Wu: https://compneuro.neuromatch.io/tutorials/W1D2_ModelFitting/student/W1D2_Tutorial2.html 31




Solution to multiple linear regression

How do we minimize (3.2)7 Denote by X the N X (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(B) = (y — XB8)" (y — XB). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to § we obtain

%55 = X'y - Xp)
PRSS 1y (34)
oBopT '

Assuming (for the moment) that X has full column rank, and hence X7X
is positive definite, we set the first derivative to zero

XT(y —XB)=0 (3.5)
to obtain the unique solution
B =XTX)"'XTy. (3.6)

source: The Elements of Statstical Learning, Hastie, Tibshirani, Friedman (2017)



Fitting logistic regression

4.4.1 Fitting Logistic Regression Models

Logistic regression models are usually fit by maximum likelihood, using the
conditional likelihood of G given X. Since Pr(G|X) completely specifies the
conditional distribution, the multinomial distribution is appropriate. The
log-likelihood for N observations is

N
£0) = logpg, (z:; ), (4.19)
=1

where pi(z;;0) = Pr(G = k| X = z;;0).

We discuss in detail the two-class case, since the algorithms simplify
considerably. It is convenient to code the two-class g; via a 0/1 response y;,
where y; = 1 when g; = 1, and y; = 0 when g; = 2. Let pi(z;0) = p(z;90),
and py(z;6) = 1 — p(x;0). The log-likelihood can be written

“p)

N
>~ {uilogp(@is8) + (1 - ) log(1 — p(zi; 8)) }
i=1

N
> {uif"a —log(1 + 7)) (4.20)
=

Here 8 = {B10,51}, and we assume that the vector of inputs z; includes
the constant term 1 to accommodate the intercept.

To maximize the log-likelihood, we set its derivatives to zero. These score
equations are

()
2 - > i —plai ) = (421)

which are p+ 1 equations nonlinear in 3. Notice that since the first compo-
nent of z; is 1, the first score equation specifies that 211\;1 Y = ZzNzl p(zi; B);
the ezpected number of class ones matches the observed number (and hence
also class twos.)

To solve the score equations (4.21), we use the Newton-Raphson algo-
rithm, which requires the second-derivative or Hessian matrix

2 N
ot = ~ 2P —p(ei ) («2)

Starting with 5°', a single Newton update is

ow ol [(O%(B)\ " 04(B)
prev = ﬂ‘d—(aﬂam) 2, (4.23)

where the derivatives are evaluated at °d.

It is convenient to write the score and Hessian in matrix notation. Let
y denote the vector of y; values, X the N x (p + 1) matrix of z; values,
p the vector of fitted probabilities with ith element p(z;;3°'9) and W a
N x N diagonal matrix of weights with ith diagonal element p(z;; 8°'9)(1 —
p(z;; 4°'4)). Then we have

0

%) = XTy-p) (424)

0%0(B) _ T
90FT XWX (4.25)

The Newton step is thus
ﬂnew — ﬂold e (XTWX)fle(y _p)
= (XTWX)'XTW (X7 + Wl(y - p))

(XTWX) ' XTWaz. (4.26)

In the second and third line we have re-expressed the Newton step as a
weighted least squares step, with the response

z=XpM+ W (y —p), (4.27)

sometimes known as the adjusted response. These equations get solved re-
peatedly, since at each iteration p changes, and hence so does W and z.
This algorithm is referred to as iteratively reweighted least squares or IRLS,
since each iteration solves the weighted least squares problem:

BV« arg mgn(z - XB)TW(z — XB). (4.28)

It seems that B = 0 is a good starting value for the iterative procedure,
although convergence is never guaranteed. Typically the algorithm does
converge, since the log-likelihood is concave, but overshooting can occur.
In the rare cases that the log-likelihood decreases, step size halving will
guarantee convergence.

source: The Elements of Statistical Learning, Hastie, Tibshirani, Friedman (2017)
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Blog post on linear regression

* https://towardsdatascience.com/machine-learning-for-biomedical-

data-linear-regression-7d43461cdfa9
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